Classic Texts in the Sciences

Harald Fritzsch
Editor

Murray Gell-
Mann and the
Physics of
Quarks

X Birkhauser



Murray Gell-Mann and the Physics of Quarks

X Birkhiuser



Classic Texts in the Sciences

Series Editors
Jiirgen Jost
Armin Stock

Classic Texts in the Sciences offers essential readings for anyone interested in the origin
and roots of our present-day culture. Considering the fact that the sciences have signifi-
cantly shaped our contemporary world view, this series not only provides the original texts
but also extensive historical as well as scientific commentary, linking the classical texts to
current developments. Classic Texts in the Sciences presents classic texts and their authors
not only for specialists but for anyone interested in the background and the various facets of
our civilization.

More information about this series at http://www.springer.com/series/11828


http://www.springer.com/series/11828

Harald Fritzsch
Editor

Murray Gell-Mann and the
Physics of Quarks

Birkhauser



Editor

Harald Fritzsch
Physik-Department
Ludwig-Maximilians-Universitit
Miinchen, Germany

ISSN 2365-9963 ISSN 2365-9971 (electronic)
Classic Texts in the Sciences
ISBN 978-3-319-92194-5 ISBN 978-3-319-92195-2 (eBook)

https://doi.org/10.1007/978-3-319-92195-2
Library of Congress Control Number: 2018946688

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a
warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may
have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This book is published under the imprint Birkhduser, www.birkhauser-science.com, by the registered company
Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-319-92195-2

Contents

Murray Gell-Mann. . . ......... . 1
Harald Fritzsch
Isospin and SU3)-Symmetry . . . . .. ... ... 5
Harald Fritzsch
The Eightfold Way . . . ... ... ... . .. . . . 11
Harald Fritzsch
Introduction to Quark Model . . ... ...... ... ... . ... ... ... .. ...... 43
Harald Fritzsch
Quarks . . . ... e 49
Harald Fritzsch
Light Cone Current Algebra. .. ......... ... ... ... ... ... .. ... ...... 53
Harald Fritzsch
Quantum Chromodynamics. . . .. .............. ... ..., 89
Harald Fritzsch
Pion Decay and Electron-Positron Annihilation. . . ................ ... .. 95
Harald Fritzsch
Current Algebra — Quarks and whatelse? . ... ........................ 109
Harald Fritzsch
Advantages of Color Octet Gluons . . . ............................... 131
Harald Fritzsch
Lectureson Quarks. . . ....... ... ... . ... .. 137
Harald Fritzsch



®

Check for
updates

Harald Fritzsch

Murray Gell-Mann was born in New York on September 15, 1929. His father Arthur Gell-
Mann came from the city of Czernowitz, which today is part of the Ukraine. He studied at
the University of Vienna. In 1911 he came to New York, where he married Pauline
Reichstein.

Arthur Gell-Mann started a language school in Manhattan, which was successful for a
few years. When it failed in the Great Depression, he got a position in a bank. Arthur Gell-
Mann was very interested in science, especially in astronomy, physics and mathematics.

Murray Gell-Mann grew up in the area west of the central park. He was a gifted child
and learned to read and write at the early age of 3. When he was 10 years old, he read
“Finnegans Wake” of James Joyce, a book, which should play a specific role later in his
life. Together with his brother Ben, who was 9 years older than Murray, he explored
New York City, in particular the Central Park and the Bronx Park.

When Gell-Mann was 14 years old, he received a scholarship from Yale University,
which allowed him to study physics at Yale. Afterwards he went to the Massachusetts
Institute of Technology and worked on his Ph.D. His advisor was Victor Weisskopf. He
obtained his Ph.D. in 1951 and went as a post-doc to the Institute for Advanced Study in
Princeton. The director of the institute, Prof. Robert Oppenheimer, encouraged Gell-Mann
to work on problems in elementary particle physics.

In Princeton he met the English woman Margaret Dow, which worked in an institute in
Princeton. In 1955 they got married. They had two children, a daughter Lisa, born in 1956,
and a son Nicholas, born in 1963.

In 1952 Gell-Mann joined the Physics Department at the University of Chicago and
worked in the research group of Enrico Fermi. Gell-Mann was in particular interested in the
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2 H. Fritzsch

new particles, discovered in the cosmic rays—the new baryons, which were called
“hyperons”, and the new K-mesons. Nobody understood, why these particles were created
easily in nuclear collisions, but decayed rather slowly.

In order to understand the peculiar properties of the new hadrons, Gell-Mann introduced
a new quantum number, which he called strangeness. The nucleons were assigned strange-
ness zero. The newly discovered lambda hyperon had strangeness (—1), likewise the three
sigma hyperons. The two Xi-hyperons had strangeness (—2) and the negatively charged
K-meson had strangeness (—1).

Gell-Mann assumed that the strangeness quantum number was conserved by the strong
and electromagnetic interactions, but violated by the weak interaction. Thus the decays of
the strange particles into normal particles without strangeness could only proceed via the
weak interaction.

The idea of strangeness explained in a simple way, why the new particles were produced
copiously in hadronic collisions, but decayed very slowly. In a collision a new particle with
strangeness (— 1) could be produced by the strong interaction only together with a particle
with strangeness (+1). For example, a negatively charged sigma hyperon could be pro-
duced together with a positively charged K-meson. However a positively charged sigma
hyperon could not be produced together with a negatively charged K-meson, since both
particles have strangeness (—1). Likewise two neutrons could not turn into two neutral
lambda hyperons.

In 1954 Murray Gell-Mann and Francis Low worked on the renormalization program of
quantum electrodynamics (QED). They introduced a new method, which later was called
the “renormalization group” method. Gell-Mann and Low calculated the energy depen-
dence of the renormalized coupling constant.

In quantum electrodynamics the effective coupling constant increases with the energy.
This was observed later with the LEP accelerator at CERN. One found that the fine
structure constant at 200 GeV is about 1/127, while at low energies it is close to 1/137.
The observed increase agreed perfectly with the theoretical prediction. The methods of
Gell-Mann and Low were very successful later in the theory of quantum chromodynamics.

In 1955 Gell-Mann obtained an offer from the California Institute of Technology in
Pasadena, which was initiated by Richard Feynman. In 1956 he moved to Pasadena. One
year later he was promoted to full professor—he became the youngest full professor in the
Caltech history. In 1967 Gell-Mann obtained the prestigious Robert Andrews Millikan
professorship.

In 1957 Gell-Mann started to work with Richard Feynman on a new theory of the weak
interactions. They published 1 year later their paper “Theory of the Fermi Interaction”.
Feynman and Gell-Mann describe the weak interaction by a universal interaction, given by
the product of two currents. Each current is the difference of a vector current and an axial-
vector current.

The charged lepton current is a product of a charged lepton field and an antineutrino
field. The electrons emitted in a beta-decay are left-handed, the emitted antineutrinos right-
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handed. This theory of Feynman and Gell-Mann was used later in the gauge theory of the
electroweak interactions.

In 1961 Gell-Mann invented a new symmetry to describe the new baryons and mesons,
found in the cosmic rays and in various accelerator experiments. He used the unitary group
SU(3). At the same time such a symmetry was also considered by Yuval Neeman, who
worked at the Israeli embassy in London. The baryons and mesons were placed in octets of
the group SU(3). The spin 3/2 baryons were described by a 10 representation, the decuplet.

Only nine particles in the decuplet were known in 1961, the four delta resonances
(strangeness 0), the three sigma resonances (strangeness —1) and the two chi resonances
(strangeness —2). Gell-Mann predicted the existence and the mass of a negatively charged
tenth particle with strangeness —3, which he called the omega minus particle.

This particle is unique in the decuplet, since due to its strangeness (—3) it could only
decay by the weak interaction. Thus it would have a relatively long lifetime. It was found in
1964 in Brookhaven Laboratory—it had the mass, which Gell-Mann had predicted. In
1969 Gell-Mann received the Nobel prize for his new symmetry. Gell-Mann is interested
linguistics and speaks besides English also Italian, French and Spanish. Part of his lecture at
the Nobel ceremony was given in Swedish.

Gell-Mann described the symmetry breaking by a SU(3)-octet. He found a mass
formula, which was also found by Susumu Okubo in Japan and is called the Gell-Mann—
Okubo mass formula. It describes the mass differences among the baryons and mesons
very well.

In 1964 Gell-Mann discussed the triplets of SU(3), which he called “quarks”. This name
appeared first in the novel of James Joyce “Finnegans Wake”: Three quarks for Muster
Mark. The quarks were the constituents of the hadrons. George Zweig, a graduate student
of Gell-Mann, worked in 1964 at CERN. He also introduced the quarks, which he called
“aces”. But Zweig published his idea only as a CERN preprint. Gell-Mann published a
short letter in the European journal “Physics Letters” with the title: “A Schematic Model of
Baryons and Mesons”.

Three quarks were the constituents of the baryons and mesons, the up quark “u”, the
down quark “d” and the strange quark “s”. The baryons were bound states of three
quarks—for example the proton had the structure (uud), the neutron (ddu). The pion
consisted of a quark and an antiquark.

The strange particles contained one, two or three s-quarks, corresponding to the
strangeness —1, —2, and —3 respectively. The lambda particle had the structure (uds).
The omega minus was a bound state of three strange quarks: (sss). The mesons were bound
states of a quark and an antiquark. For example, the positively charged K-meson was a
bound state of an up-quark and a strange antiquark.

In his letter Gell-Mann also mentioned a possible field theory, to describe the dynamics
of the quarks. This theory was very similar to quantum electrodynamics. The electron was
replaced by a quark, the photon was replaced by a vector boson, which Gell-Mann called
“gluon”. Later this theory was modified and became the theory of quantum chromodynam-
ics, which describes the strong interactions.
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The quarks had peculiar properties—they had in particular the electric charges 2/3 and
—1/3. Since the observed hadrons had integral charges, the quarks could not be real
particles. Either they were just mathematical symbols, or they must be confined inside
the hadrons.

In 1968 the quarks were found indirectly in the SLAC experiments. In the deep inelastic
electron-proton experiments the electrons were deflected by point-like constituents.
Richard Feynman described these objects as “partons”. It turned out, that the partons
were the quarks. Thus the quarks were not mathematical symbols, but particles, confined
inside the hadrons. In 1971 Gell-Mann and Harald Fritzsch described the results of the
experiments at SLAC with the light cone current algebra of currents.

The quark model had serious problems. For example, the omega minus particle, a bound
state of three strange quarks, placed symmetrically in an s-wave, violated the Pauli
principle, since the wave function of the ground state is symmetric. William Bardeen,
Harald Fritzsch and Murray Gell-Mann introduced in 1971 a new quantum number for the
quarks, which they called the “color quantum number”. The quarks appeared in three
colors: red, green and blue. The tranformations of the three colors were described by the
color group SU(3).

The hadrons were considered as color singlets. The simplest color singlets are the bound
states of a quark and an antiquark, the mesons, or of three quarks, the baryons. The baryon
wave functions is anti-symmetric in the color index. The omega minus particles consisted
of three strange quarks, a read, a green and a blue strange quark. The wave function is
antisymmetric in the three color indices, thus there is no problem with the Pauli principle.

In 1972 Fritzsch and Gell-Mann introduced a gauge theory for the strong interactions.
The color quantum number was considered to be a gauge quantum number, like the electric
charge in QED. The color symmetry was considered to be an exact symmetry. The gauge
bosons were massless gluons, which transformed as an octet of the color group.

Later they called this theory “Quantum Chromodynamics”, QCD. The theory was
discussed at the Rochester conference in 1972 at the Fermi National Accelerator Labora-
tory. In 1973 Harald Fritzsch, Murray Gell-Mann and Heinrich Leutwyler discussed the
advantages of this theory in the letter “Advantages of the Color Octet Gluon Picture”.

In 1979 Gell-Mann, Pierre Ramond and Richard Slansky introduced the seesaw mecha-
nism for the neutrino masses. The very small neutrino masses are then related to the masses
of the charged leptons and a very heavy Majorana mass for the righthanded neutrino. After
1980 Gell-Mann got interested string theory. He thought that the superstring theory might
lead to a theory of all particles and forces, including the gravitational interaction.

For 23 years Gell-Mann was one of the directors of the MacArthur foundation. In 1984
he was one of the founders of the Santa Fe Institute, an interdisciplinary research institute
near Santa Fe. In 1993 Gell-Mann retired from the California Institute of Technology. He
moved to Santa Fe, New Mexico and worked in the Santa Fe Institute. In 1994 his popular
book “The Quark and the Jaguar” was published.

Gell-Mann lives in a big house south-east of the city of Santa Fe, in the hills before the
Sangre-de-Christo mountains.
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In 1911 Ernest Rutherford discovered that an atom consists of a small positively charged
nucleus, surrounded by a cloud of electrons. Almost all of the mass of an atom is located in
the nucleus, with a very small contribution from the electron cloud.

Also the atomic nucleus is a composite system. Inside the nucleus are positively charged
particles, the protons. The number of protons is equal to the number of electrons in the
cloud. The nucleus of hydrogen is just one proton.

In the nucleus of helium are two protons. But the mass of the helium nucleus is not twice
the proton mass, but about four times. Rutherford suggested that the nucleus consists of
positive protons and of neutral particles, which he called neutrons. The mass of a neutron
should be about equal to the mass of the proton.

Rutherford was right—in 1932 the neutron was discovered. It is unstable and decays
into a proton, an electron and a neutrino. This decay is due to the weak interactions. But a
neutron inside a nucleus is usually stable. Atomic nuclei are bound states of protons and
neutrons. They are bound by the strong nuclear force.

Apart from the electric charge protons and neutrons are very similar. In particular their
masses are about the same. They are considered as different states of the same particle, the
nucleon, since the strong force does not distinguish between proton and neutron. The mass
of the neutron is slightly larger than the proton mass. The neutron decays into a proton with
a lifetime of about 14 min.

In 1932 Werner Heisenberg introduced an internal symmetry, the isospin symmetry. It is
an exact symmetry of the strong interactions. Protons and neutrons have isospin 1/2. They
are described by the nucleon wave function, which has two components. The proton is the
upper component, the neutron is the lower component:
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_(P
v=(2)
The transformations of the isospin are described by the unitary group SU(2). The three
generators of the isospin can be described by the three Pauli matrices:

7= (11,72,73),

0 1 0 —i 1 0
T = , T2 = , T3 = s
1 0 i 0 0 -1

Ii:%i.

2

The commutation relations of the generators are:

(LI, — LIy) = [1I,,I,] = il3,
I, I3] = ily,
15, 1] = il

The proton and neutron have different isospin projections:

p: 13=+%, n: 13:—5-

The representations of the isospin group are the singlet, the doublet, the triplet, the
quadruplet etc. The doublet representation is the fundamental representation of SU(2). The
two nucleons, the proton and the neutron, are described by a doublet representation.

Heisenberg assumed that the isospin symmetry is broken only by electromagnetism, but
this leads to a problem. If electromagnetism is turned off, the mass of the proton should be
equal to the mass of the neutron. If electromagnetism is turned on, one expects that the
proton mass is larger than the neutron mass, due to the electromagnetic self-energy. But this
is not the case—the neutron mass is about 1.4 MeV larger than the proton mass. Thus the
isospin symmetry is violated even in the absence of electromagnetism. We shall see later,
that this effect is related to the masses of the quarks.

Hideki Yukawa predicted in 1935 the existence of mesons as the particles, which
generate the strong nuclear force. From the range of the strong nuclear force Yukawa
estimated, that the mass of this meson should be about 100 MeV. In 1947 these mesons
were discovered, the three pions:
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The pions have a small mass, only 140 MeV. They are unstable particles—the two
charged pions decay via the weak interactions into a charged myon and its neutrino, the
neutral pion decays electromagnetically into two photons.

The pions are an isospin triplet. Later two neutral mesons were observed, the n-meson
with a mass of about 548 MeV and the n’-meson with a mass of about 958 MeV. Both
mesons are isospin singlets.

In 1951 the four A-resonances were discovered in the experiments at the cyclotron in
Chicago. These resonances were created in the scattering of pions and nucleons. In the
collisions of positive pions and of protons the A-resonance with electric charge (+2) was
observed. The A-resonances have spin 3/2 and are described by a quadruplet of the isospin:

A++
A+
AO
A~

A:

The A-resonances decay into a nucleon and a pion.
In the year 1947 the four K-mesons (mass ~ 495 MeV) were discovered:

(b &)
K* K° )

The K-mesons are an isospin doublet. They decay due to the weak interactions. For
example, the positively charged K-meson can decay into a muon and a neutrino, or into two
pions. The nine mesons, the three pions, the four K-mesons, the n-meson and the n'-meson,
are pseudo-scalar mesons, i.e. particles without spin.

There exist also vector mesons with spin one, the three p-mesons with electric charges
(+1, 0 and —1) and a mass of ~ 770 MeV, which are described by an isospin triplet.
Furthermore there are two isospin singlets, the w-meson (mass ~ 782 MeV) and the
@-meson (mass ~ 1020 MeV):

In addition there are four K*-mesons (mass ~ 892 MeV):
K*+ K*f
(K*O k*o )

Thus there exist nine vector mesons.
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From the year 1947 new baryons were observed in the cosmic rays, the neutral A-baryon
(mass ~ 1116 MeV), the three X-baryons (mass ~ 1190 MeV) and the two E-baryons (mass
~ 1320 MeV). The A-baryon is an isospin singlet, the three X-baryons are an isospin triplet
and the two E-baryons an isospin doublet. These particles are called “hyperons”.

The new hyperons and the K-mesons were created in pairs by the strong interactions, but
they decayed rather slowly, due to the weak interactions. For this reason Murray Gell-
Mann introduced in 1953 a new quantum number, the “strangeness S”. The nucleons have
no strangeness, the A-baryon and the X-baryons have strangeness (—1) and the E-baryons
have strangeness (—2). Two K-mesons have strangeness (—1), their antiparticles have
strangeness (+1).

This new quantum number is conserved in the strong interactions. This implies that in
strong interactions a strange particle cannot be produced alone. It must be produced
together with another strange particle. For example, a A-baryon with strangeness (—1) is
produced together with a K meson of strangeness (+1). The decay of the strange particles is
due to the weak interactions. Thus strangeness disappears in the weak decays—it is not
conserved by the weak interactions.

In 1961 Murray Gell-Mann combined the isospin and the strangeness by introducing a
new internal symmetry, based on the group SU(3). This group is an extension of the isospin
group SU(2). It has eight generators, which obey the commutation relations:

[Tia T]] = lkaTk

The structure constants f(ijk) are:

1
f123 =1 f147 :f246 :f257 :f345 :E

| =

f156 :f367 = -

N|§ o

Sfass = fer3 =

The smallest representations of the group SU(3) are the triplet, the sextet, the octet and
the decuplet. The triplet representation is the fundamental representation of SU(3).

The observed hadrons are members of specific representations of SU(3). The lowest
baryons and mesons are members of octet representations—Gell-Mann described this as
the “eightfold way”. The two nucleons, the A-hyperon, the three Z-hyperons and the two
H-hyperons are described by an octet:
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939MeV \ S=0
N
\_\.
M, =1115MeV S=-1
M;=1193MeV
1318MeV \ S=-

[x

Q=1\ Q=0\ Q=+1\

The nine mesons, the three pions, the four K-mesons, the n-meson and the 1'-meson, are
described by an octet and a singlet:

KO K+

K- KO

Unlike the isospin symmetry the SU(3) symmetry is strongly broken—the various SU
(3) octets have particles with quite different masses. In the baryon octet the masses range
from 940 MeV to 1320 MeV. Thus the symmetry breaking is about 25%. When the SU
(3) symmetry was introduced, it was unclear, why this symmetry is strongly broken, since
there exists no interaction, which breaks the SU(3) symmetry. In the next chapter we shall
see that the large symmetry breaking is due to the masses of the quarks.

Besides the four A-resonances one observed five excited baryons with spin 3/2: the three
Z-resonances (mass ~ 1380 MeV) and the two E-resonances (mass ~ 1526 MeV). These
nine particles could only be described by a decuplet representation of SU(3), but one
particle was missing, a baryon with the strangeness (—3). Gell-Mann suggested that this
particle, which he called “Q”, must exist.
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He also predicted the mass of this particle. The Q-baryon would decay weakly, thus its
lifetime would be much longer than the lifetimes of the other members of the baryon

decuplet.
The Q-baryon was discovered in 1964 at the Brookhaven National Laboratory. Its mass

is about 1672 MeV. Afterwards it was clear, that the SU(3) symmetry is an approximate
symmetry of nature.



Check for
updates

The Eightfold Way

Harald Fritzsch

H. Fritzsch (>))

Physik-Department, Ludwig-Maximilians-Universitit Physik-Department, Miinchen, Germany
e-mail: fritzsch@mppmu.mpg.de

© Springer International Publishing AG, part of Springer Nature 2018 11
H. Fritzsch (ed.), Murray Gell-Mann and the Physics of Quarks, Classic Texts in the
Sciences, https://doi.org/10.1007/978-3-319-92195-2_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92195-2_3&domain=pdf
mailto:fritzsch@mppmu.mpg.de

12 H. Fritzsch

From: California Institute of Technology Laboratory
Report CTSL-20 (1961),

THE EIGHTFOLD WAY:
A THEORY OF STRONG INTERACTION SYMMETRY*

Murray Gell-Mann

March 15, 1961
(Second printing: April, 1962)
(Third printing: October, 1963)
(Preliminary version circulated Jan. 20, 1961)

Reprint from The Eightfold Way, eds. M. Gell-Mann and Y. Ne’eman (W.
A. Benjamin, 1964).

“Research supported in part by the U. S. Atomic Energy Commission Contract
No. AT(11-1)-68, and the Alfred P. Sloan Foundation.
1



The Eightfold Way

We attempt once more, as in the global symmetry scheme, to treat the
eight known baryons as a supermultiplet, degenerate in the limit of a certain
symmetry but split into isotopic spin multiplets by a symmetry-breaking
term. Here we do not try to describe the symmetry violation in detail, but
we ascribe it phenomenologically to the mass differences themselves, sup-
posing that there is some analogy to the p-e mass difference.

The symmetry is called unitary symmetry and corresponds to the “uni-
tary group” in three dimensions in the same way that charge independence
corresponds to the “unitary group” in two dimensions. The eight infinites-
imal generators of the group form a simple Lie algebra, just like the three
components of isotopic spin. In this important sense, unitary symmetry is
the simplest generalization of charge independence.

The baryons then correspond naturally to an eight-dimensional irreducible
representation of the group; when the mass differences are turned on, the
familiar multiplets appear. The pion and K meson fit into a similar set of
eight particles, along with a predicted pseudoscalar meson x° having [ = 0.
The pattern of Yukawa couplings of 7, K, and y is then nearly determined,
in the limit of unitary symmetry.

The most attractive feature of the scheme is that it permits the description
of eight vector mesons by a unified theory of the Yang-Mills type (with
a mass term). Like Sakurai, we have a triplet p of vector mesons coupled
to the isotopic spin current and a singlet vector meson w® coupled to the
hypercharge current. We also have a pair of doublets A/ and M, strange
vector mesons coupled to strangeness-changing currents that are conserved
when the differences are turned off. There is only one coupling constant, in
the symmetric limit, for the system of eight vector mesons. There is some
experimental evidence for the existence of w® and M, while p is presumably
the famous / = 1, J = 1, w-7 resonance.

A ninth vector meson coupled to he baryon current can be accommodated
naturally in the scheme.

The most important prediction is the qualitative one that the eight baryons
should all have the same spin and parity and that the pseudoscalar and vector
mesons should form “octets”, with possible additional “singlets”.

If the symmetry is not too badly broken in the case of the renormalized
coupling constants of the eight vector mesons, then numerous detailed pre-
dictions can be made of experimental results.

The mathematics of the unitary group is described by considering three
fictitious “leptons”, v, e~, and p~, which may or may not have something
to do with real leptons. If there is a connection, then it may throw light on
the structure of the weak interactions.

It has seemed likely for many years that the strongly interacting particles,
grouped as they are into isotopic multiplets, would show traces of a higher

13
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symmetry that is somehow broken. Under the higher symmetry, the eight
familiar baryons would be degenerate and form a supermultiplet. As the
higher symmetry is broken, the =, A, >, and N would split apart, leav-
ing inviolate only the conservation of isotopic spin, of strangeness, and of
baryons. Of these three, the first is partially broken by electro-magentism
and the second is broken by the weak interactions. Only the conservation
of baryons and of electric charge are absolute.

An attempt [1, 2] to incorporate these ideas in a concrete model was
the scheme of “global symmetry”, in which the higher symmetry was valid
for the interactions of the m meson, but broken by those of the K. The
mass differences of the baryons were thus attributed to the K couplings,
the symmetry of which was unspecified, and the strength of which was
supposed to be significantly less than that of the 7 couplings.

The theory of global symmetry has not had great success in predicting
experimental results. Also, it has a number of defects. The peculiar dis-
tribution of isotopic multiplets among the observed mesons and baryons is
left unexplained. The arbitrary K couplings (which are not really particu-
larly weak) bring in several adjustable constants. Furthermore, as admitted
in Reference [1] and reemphasized recently by Sakurai [3, 4] in his remark-
able articles predicting vector mesons, the global model makes no direct
connection between physical couplings and the currents of the conserved
symmetry operators.

In place of global symmetry, we introduce here a new model of the higher
symmetry of elementary particles which has none of these faults and a num-
ber of virtues.

We note that the isotopic spin group is the same as the group of all unitary
2 x 2 matrices with unit determinant. Each of these matrices can be written
as exp(iA), where A is a hermitian 2 x 2 matrix. Since there are three
independent hermitian 2 x 2 matrices (say, those of Pauli), there are three
components of the isotopic spin.

Our higher symmetry group is the simplest generalization of isotopic
spin, namely the group of all unitary 3 x 3 matrices with unit determinant.
There are eight independent traceless 3 x 3 matrices and consequently the
new “unitary spin” has eight components. The first three are just the com-
ponents of the isotopic spin, the eighth is proportional to the hypercharge
Y (whichis +1 for N and K, —1 for = and K, 0 for A, ¥, 7, etc.), and the
remaining four are strangeness-changing operators.

Just as isotopic spin possesses a three-dimensional representation (spin 1),
so the “unitary spin” group has an eight-dimensional irreducible representa-
tion, which we shall call simply 8. In our theory, the baryons supermultiplet
corresponds to this representation. When the symmetry is reduced, then I
and Y are still conserved but the four other components of unitary spin are
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not; the supermultiplet then breaks up into =, ¥, A, and N. Thus the dis-
tribution of multiplets and the nature of strangeness or hypercharge are to
some extent explained.

The pseudoscalar mesons are also assigned to the representation 8. When
the symmetry is reduced, they become the multiplets K, K, 7, and y, where
X is a neutral isotopic singlet meson the existence of which we predict.
Whether the PS mesons are regarded as fundamental or as bound states,
their Yukawa couplings in the limit of “unitary” symmetry are describable
in terms of only two coupling parameters.

The vector mesons are introduced in a very natural way, by an extension
of the gauge principle of Yang and Mills [5]. Here too we have a supermul-
tiplet of eight mesons, corresponding to the representation 8. In the limit of
unitary symmetry and with the mass of these vector mesons “turned off™,
we have a completely gauge-invariant and minimal theory, just like electro-
magnetism. When the mass is turned on, the gauge invariance is reduced
(the gauge function may no longer be space-time dependent) but the con-
servation of unitary spin remains exact. The sources of the vector mesons
are the conserved currents of the eight components of the unitary spin [6].

When the symmetry is reduced, the eight vector mesons break up into
a triplet p (coupled to the still-conserved isotopic spin current), a singlet
w (coupled to the still-conserved hypercharge current), and a pair of dou-
blets M and M (coupled to a strangeness-changing current that is no longer
conserved). The particles p and w were both discussed by Sakurai. The p
meson is presumably identical to the ] = 1, J = 1, -7 resonance pos-
tulated by Frazer and Fulco [7] in order to explain the isovector electro-
magnetic form factors of the nucleon. The w meson is no doubt the same
asthe I = 1, J = 0 particle or 37 resonance predicted by Nambu [8] and
later by Chew [9] and others in order to explain the isoscalar form factors
of the nucleon. The strange meson M may be the same as the K™ particle
observed by Alston et al [10].

Thus we predict that the eight baryons have the same spin and parity, that
K is pseudoscalar and that x exists, that p and w exist with the properties
assigned to them by Sakurai, and that M exists. But besides these quali-
tative predictions, there are also the many symmetry rules associated with
the unitary spin. All of these are broken, though, by whatever destroys the
unitary symmetry, and it is a delicate matter to find ways in which these
effects of a broken symmetry can be explored experimentally.

Besides the eight vector mesons coupled to the unitary spin, there can
be a ninth, which is invariant under unitary spin and is thus not degenerate
with the other eight, even in the limit of unitary symmetry. We call this
meson B°. Presumably it exists too and is coupled to the baryon current.

15
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It is the meson predicted by Teller [11] and later by Sakurai [3] and ex-
plains most of the hard-core repulsion between nucleons and the attraction
between nucleons and anti-nucleons at short distances.

We begin our exposition of the “eightfold way” in the next Section by dis-
cussing unitary symmetry using fictitious “leptons” which may have noth-
ing to do with real leptons but help to fix the physical ideas in a rather
graphic way. If there is a parallel between these “leptons” and the real ones,
that would throw some light on the weak interactions, as discussed briefly
in Section VI.

Section III is devoted to the 8 representation and the baryons and Sec-
tion IV to the pseudoscalar mesons. In Section V we present the theory of
the vector mesons.

The physical properties to be expected of the predicted mesons are dis-
cussed in Section VII, along with a number of experiments that bear on
those properties.

In Section VIII we take up the vexed question of the broken symmetry,
how badly it is broken, and how we might succeed in testing it.

II. The “Leptons” as a Model for Unitary Symmetry

For the sake of a simple exposition, we begin our discussion of unitary
symmetry with “leptons”, although our theory really concerns the baryons
and mesons and the strong interactions. The particles we consider here
for mathematical purposes do not necessarily have anything to do with real
leptons, but there are some suggestive parallels. We consider three leptons,
v, e, and p~, and their antiparticles. The neutrino is treated on the same
footing as the other two, although experience suggests that if it is treated
as a four-component Dirac field, only two of the components have physical
interaction. (Furthermore, there may exist two neutrinos, one coupled to the
electron and the other to the muon.)

As far as we know, the electrical and weak interactions are absolutely
symmetrical between e~ and p~, which are distinguished, however, from v.
The charged particles e~ and 4~ are separated by the mysterious difference
in their masses. We shall not necessarily attribute this difference to any in-
teraction, nor shall we explain it in any way. (If one insists on connecting
it to an interaction, one might have to consider a coupling that becomes im-
portant only at exceedingly high energies and is, for the time being, only
of academic interest). We do, however, guess that the ;-e mass splitting is
related to the equally mysterious mechanism that breaks the unitary symme-
try of the baryons and mesons and splits the super-multiplets into isotopic
multiplets. For practical purposes, we shall put all of these splittings into
the mechanical masses of the particles involved.
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It is well known that in present quantum electrodynamics, no one has suc-
ceeded in explaining the e-v mass difference as an electromagnetic effect.
Without prejudice to the question of its physical origin, we shall proceed
with out discussion as if that mass difference were “turned on” along with
the charge of the electron.

If we now “turn off” the u-e mass difference, electromagnetism, and the
weak interactions we are left with a physically vacuous theory of three ex-
actly similar Dirac particles with no rest mass and no known couplings.
This empty model is ideal for our mathematical purposes, however, and is
physically motivated by the analogy with the strongly interacting particles,
because it is at the corresponding stage of total unitary symmetry that we
shall introduce the basic baryon mass and the strong interactions of baryons
and mesons.

The symmetric model is, of course, invariant under all unitary transfor-
mations on the three states, v, e~, and u~.

Let us first suppose for simplicity that we had only two particles v and
e”. We can factor each unitary transformation uniquely into one which
multiplies both particles by the same phase factor and one (with determi-
nant unity) which leaves invariant the product of the phase factors of v and
e~ . Invariance under the first kind of transformation corresponds to conser-
vation of leptons v and e™. It may be considered separately from invariance
under the class of transformations of the second kind (called by mathemati-
cians the unitary unimodular group in two dimensions).

Each transformation of the first kind can be written as a matrix ¢*?1,
where 1 is the unit 2 x 2 matrix. The infinitesimal transformation is 1 +
i(0¢)1 and so the unit matrix is the infinitesimal generator of these transfor-
mations. The transformations of the second kind are generated in the same
way by the three independent traceless 2 x 2 matrices, which may be taken
to be the three Pauli isotopic spin matrices 71, T5, T5. We thus have

3
1+¢259k% @.1)
k=1

as the general infinitesimal transformation of the second kind. Symmetry
under all the transformations of the second kind is the same as symmetry un-
der 71, 79, T3, in other words charge independence or isotopic spin symme-
try. The whole formalism of isotopic spin theory can then be constructed by
considering the transformation properties of this doublet or spinor (v, e™)
and of more complicated objects that transform like combinations of two or
more such leptons.

17
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The Pauli matrices 7, are hermitian and obey the rules
Trr; 75 = 20,
(7, Tj] = 2ie;j5 i
{mi, 7} =2§;;1 (2.2)

We now generalize the idea of isotopic spin by including the third object
1~ . Again we factor the unitary transformations on the leptons into those
which are generated by the 3 x 3 unit matrix 1 (and which correspond to
lepton conservation) and those that are generated by the eight independent
traceless 3 X 3 matrices (and which form the “unitary unimodular group”
in three dimensions). We may construct a typical set of eight such matrices
by analogy with the 2 x 2 matrices of Pauli. We call them \; ... \g and list
them in Table I. They are hermitian and have the properties

Tr )\i )‘j = 25”
[)\i, /\j] - 21f”k )\k

4

where the f;;;, are real and totally antisymmetric like the Kronecker symbols
e;;r of (2.2), while the d;;;, are real and totally symmetric. These properties
follow from the equations

Tr )\k [)\i7 )\j] = 41f”k
Tr )\k{)\za )\J} = 4dijk (24)

derived from (2.3).

The non-zero elements of f;;; and d;, are given in Table II for our choice
of \;. Even and odd permutations of the listed indices correspond to multi-
plication of f;;, by 1 respectively and of d;;; by +1.

The general infinitesimal transformation of the second kind is, of course,

1+ Z 591% (2.5)

by analogy with (2.1). Together with conservation of leptons, invariance
under the eight \; corresponds to complete “unitary symmetry” of the three
leptons.

It will be noticed that A\, A\, and A3 correspond to 7y, 7, and 73 for v
and e~ nothing for the muon. Thus, if we ignore symmetry between (v, e™)
and the muon, we still have conservation of isotopic spin. We also have
conservation of \g, which commutes with Ay, Ay, and )3 and is diagonal in
our representation. We can diagonalize at most two \’s at the same time and
we have chosen them to be A3 (the third component of the ordinary isotopic
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spin) and Ag, which is like strangeness or hypercharge, since it distinguishes
the isotopic single 1~ from the isotopic doublet (v, e~) and commutes with
the isotopic spin.

Now the turning-on of the muon mass destroys the symmetry under A4,
As, Ag, and A7 (i.e., under the “strangeness-changing” components of the
“unitary spin”) and leaves lepton number, “isotopic spin”, and “strange-
ness” conserved. The electromagnetic interactions (along with the electron
mass) then break the conservation of A\; and \,, leaving lepton number A3,
and strangeness conserved. Finally, the weak interactions allow the strange-
ness to be changed (in muon decay) but continue to conserve the lepton
number 7, and the electric charge

A 4

e

where n, is the number of leptons minus the number of antileptons and
equals 1 for v, e7, and i~ (i.e., the matrix 1).

We see that the situation is just what is needed for the baryons and
mesons. We transfer the symmetry under unitary spin to them and assign
them strong couplings and basic symmetrical masses. Then we turn on the
splittings, and the symmetry under the 4th, 5th, 6th, and 7th components of
the unitary spin is lifted, leaving baryon number, strangeness, and isotopic
spin conserved. Electromagnetism destroys the symmetry under the 1st and
2nd components of the spin, and the weak interactions destroy strangeness
conservation. Finally, only charge and baryon number are conserved.

III. Mathematical Description of the Baryons

In the cased of isotopic spin I, we know that the various possible charge
multiplets correspond to “irreducible representations” of the simple 2 X
2 matrix algebra described above for (v, e~). Each multiplet has 27 + 1
components, where the quantum number [ distinguishes one representation
from another and tells us the eigenvalue /([ + 1) of the operator Zle 12,
which commutes with all the elements of the isotopic spin group and in
particular with all the elements of the isotopic spin group and in particular
with all the infinitesimal group elements 1 + iZle 0 6; 1;. The operators
I; are represented, within the multiplet, by hermitian (27 4+ 1) x (27 + 1)
matrices having the same commutation rules

as the 2 x 2 matrices 7;/2. For the case of I = 1/2, we have just [; = 7;/2
within the doublet.

If we start with the doublet representation, we can build up all the others
by considering superpositions of particles that transform like the original
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doublet. Thus, the antiparticles e*, —v also form a doublet. (Notice the
minus sign on the anti-neutrino state or field). Taking N%, we obtain
a singlet, that is, a one-dimensional representation for which all the /; are
zero. Calling the neutrino and electron e, with & = 1,2, we can describe
the singlet by %éa e, or, more concisely, %ée. The three components of a
triplet can be formed by taking

2 V2 V2
and
_ 1 )
ve = §e(71 —iTy)e.

1
V2
three states, the 3 x 3 matrices I/ ¥ of the three components of [ are given

by

Rearranging these, we have just —=er;e with j = 1, 2, 3. Among these

7% = ey, . (3.2)

Now let us generalize these familiar results to the set of three states v,
e”, and p~. Call them ¢, with o = 1, 2, 3 and use ¢/ to mean /, {,, etc.
For this system we define F; = \i/2 withi =1, 2,..., 8, justas I; = 7;/2
for isotopic spin. The F; are the 8 components of the unitary spin operator
F in this case and we shall use the same notation in all representations.
The first three components of F are identical with the three components

of the isotopic spin I in all cases, while Fg will always be @ times the
hypercharge Y (linearly related to the strangeness). In all representations,

then, the components of F will have the same commutation rules
[F, Fj] = ifije By, (3.3)

that they do in the simple lepton representation for which F; = );/2. (Com-
pare the commutation rules in (2.3)). The trace properties and anticommu-
tation properties will not be the same in all representations any more than
they are for I. We see that the rules (3.1) are just a special case of (3.3) with
indices 1, 2, 3, since the f’s equal the e’s for these values of the indices.
We must call attention at this point to an important difference between
unitary or F' spin and isotopic or I spin. Whereas, with a simple change of
sign on 7, we were able to construct form €, a doublet transforming under
I just like e,, we are not able to do the same thing for the F' spin when we
consider the three anti-leptons ¢, compared to the three leptons /. True,
the anti-leptons do give a representation for F, but it is, in mathematical
language, inequivalent to the lepton representation, even though it also has
three dimensions. The reason is easy to see: when we go from leptons to
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anti-leptons the eigenvalues of the electric charge, the third component of
I, and the lepton number all change sign, and thus the eigenvalues of Fj
change sign. But they were \2}5, 7 and :/g for leptons and so they are
a different set for anti-leptons and no similarity transformation can change
one representation into the other. We shall refer to the lepton representation
as 3 and the anti-lepton representation as 3.

Now let us consider another set of “particles” L, transforming exactly
like the leptons ¢, under unitary spin and take their antiparticles L,. We
follow the same procedure used above for the isotopic spin and the doublet

e. We first construct the state f oly or % LE Just as % gave a one-

dimensional representation of I for which all the 1; were zero, so f gives
a one-dimensional representation of F' for which all the F; are zero. Call
this one-dimensional representation 1.

Now, by analogy with é\%" It _
1, 2, ..., 8. These states transform under unitary spin F' like an irreducible

representation of dime_nsion 8, which we shall call 8. In this representation,
the 8 x 8 matrices FY ¥ of the eight components F; of the unitary spin are
given by the relation

FI¥ = —if (3.4)

analogous to (3.2).

When we formed an isotopic triplet from two isotopic doublets, in the
discussion preceding (3.2), we had to consider linear combinations of the
éT;e in order to get simple states with definite electric charges, etc. We must

do the same here. Using the symbol ~ for “transforms like”, we define

1-
E 5[1()\1 — ’L)\Q)é ~ l)+
1-
Yo~ 5[/()\1 + Z)\Q)E ~ D%~
o _ + .-
EONLDJN b,-D
V2 V2
n ~ -Z()\G - ’L)\7)€ ~ S+ -

[_f()\(i + Z)\7)€ ~ l)jL -

E()\4 + Z)\5)€ ~ D° u

[\.’)M—'[\DIH[\DlH[\.’)Il—‘
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o to— T
ANLE)\SEN (Do + Dte™ —25Tu™) '
V2 V6

The most graphic description of what we are doing is given in the last
column, where we have introduced the notation D°, D*, and S+ for the L
particles analogous to the ¢ particles 7, e*, and u* respectively. D stands
for doublet and S for singlet with respect to isotopic spins, electric charges,
and hypercharges of the multiplets are exactly as we are accustomed to this
of them for the baryons listed.

We say, therefore, that the eight known baryons form one degenerate su-
permultiplet with respect to unitary spin. When we introduce a perturbation
that transforms like the p-e mass difference, the supermultiplet will break
up into exactly the known multiplets. (Of course, D will split from S at the
same time as e, v from p~.)

Of course, another type of baryon is possible, namely a singlet neutral
one that transforms like % L. If such a particle exists, it may be very
heavy and highly unstable. At the moment, there is no evidence for it.

We shall attach no physical significance to the ¢ and L “particles” out of
which we have constructed the baryons. The discussion up to this point is
really just a mathematical introduction to the properties of unitary spin.

(3.5)

IV. Pseudoscalar Mesons

We have supposed that the baryon fields NV; transform like an octet 8
under F, so that the matrices of F for the baryon fields are given by (3.4).
We now demand that all mesons transform under F in such a way as to
have F-invariant strong couplings. If the 8 mesons ; are to have Yukawa
couplings, they must be coupled to N§;N for some matrices 6;, and we
must investigate how such bilinear forms transform under F'.

In mathematical language, what we have done in Section III is to look
at the direct product 3 x 3 of the representations 3 and 3 and to find that
it reduces tot he direct sum of 8 and 1. We identified 8 with the baryons
and, for the time being, dismissed 1. What we must do now is to look at
8 x 8. Now it is easy to show that actually 8 is equivalent to 8; this is
unlike the situation for 3 and 3. (We note that the values of Y, I3, Q, etc.,
are symmetrically disposed about zero in the 8 representation). So the anti-
baryons transform essentially like the baryons and we must reduce out the
direct product 8 x 8. Standard group theory gives the result

8x8=1+8+8+10+10+27, 4.1)

where 27 = 27 (this can happen only when the dimension is the cube of an
integer). The representation 27 breaks up, when mass differences are turned
on, into an isotopic singlet, triplet, and quintet with Y = 0, a doublet and
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a quartet with Y = 1, a doublet and a quartet with Y = —1, a triplet with
Y = 2, and a triplet with Y = —2. The representation 10 breaks up, under
the same conditions, into a triplet with Y = 0, a doublet with Y = —1,
a quartet with Y = +1, and a singlet with Y = 42. The conjugate repre-
sentation 10 looks the same, of course, but with equal and opposite values
of Y. None of these much resembles the pattern of the known mesons.

The 8 representation, occurring twice, looks just the same for mesons as
for baryons and is very suggestive of the known 7, K, and K mesons plus
one more neutral pseudoscalar meson with / = 0, Y = 0, which corre-
sponds to A in the baryon case. Let us call this meson x° and suppose it
exists, with a fairly low mass. Then we have identified the known pseu-
doscalar mesons with a octet under unitary symmetry, just like the baryons.
The representations 1, 10, 10 and 27 may also correspond to mesons, even
pseudoscalar ones, but presumably they lie higher in mass, some or all of
them perhaps so high as to be physically meaningless.

To describe the eight pseudoscalar mesons as belonging to 8, we put (very
much as in (3.5))

X = T3
(7T1 — iﬁg)
+_
" V3
. (7T1 + i7i'2)
V2
T° = Ty
(4 — ims)
K= TS
V2
o (ﬂ—ﬁ - Z.ﬂ—7)
Ko — \16 7 )
V2
- (76 + im7)
V2
K- — (74 + ims) 4.2)

V2
and we know then that the matrices of F connecting the 7; are just the same
as those connecting the N;, namely F b= —if} .

To couple the 8 mesons invariantly to 8 baryons (say by 75), we must
have a coupling

21 Jo N Y5 91 N Uy (43)
for which the relation
[Fi, 97] — ifijk Qk (44)
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holds. Now the double occurrence of 8 in (4.1) assures us that there are two
independent sets of eight 8 x 8 matrices 6; obeying (4.4). One of these sets
evidently consists of the F; themselves. It is not hard to find the other set if
we go back to the commutators and anti-commutators of the A matrices in
the 3 representation (2.3). Just as we formed Ff k= —if; 5, we define

DIt = d,;, 4.5)

and it is easy to show that the D’s also satisfy (4.4). We recall that where
the F' matrices are imaginary and antisymmetric with respect to the basis
we have chosen, the D’s are real and symmetric.

Now what is the physical difference between coupling the pseudo-scalar
mesons 7m; by means of D; and by means of F;? It lies in the symmetry
under the operation

RipeZ , neZ, 2o d, 22X, A A

Kt +K Ko +Ke, 77 & +1,7° & +7°, x° & £X°,
4.6)

which is not a member of the unitary group, but a kind of reflection. In the
language of N;, we may say that R changes the sign of the second, fifth,
and seventh particles; we note that Ay, A5 and \; are imaginary while the
others are real. From Table II we can see that under these sign changes f;;x
is odd and d,; even.

It may be that in the limit of unitary symmetry the coupling of the pseudo-
scalar mesons is invariant under R as well as the unitary group. In that case,
we choose either the plus sign in (4.6) and the D coupling or else the minus
sign and the F’ coupling. The two possible coupling patterns are listed in
Table I1II.

If only one of the patterns is picked out (case of R-invariance), it is pre-
sumably the D coupling, since that gives a large A7 interaction (while the
F’ coupling gives none) and the A7y interaction is the best way of explain-
ing the binding of A particles in hypernuclei.

In general, we may write the Yukawa coupling (whether fundamental or
phenomenological, depending on whether the 7; are elementary or not) in
the form

Lint = 2igoN7ys [aD; + (1 — a)F] N7; . 4.7

We note that in no case is it possible to make the couplings AK'N and
3K N both much smaller than the N7V coupling. Since the evidence from
photo-K production seems to indicate smaller effective coupling constants
for AKN and XK N than for N7 N (indeed, that was the basis of the global
symmetry scheme), we must conclude that our symmetry is fairly badly
broken. We shall return to that question in Section VII.
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A simple way to read off the numerical factors in Table III, as well as
those in Table IV for the vector mesons, is to refer to the chart in Table V,
which gives the transformation properties of mesons and baryons in terms
of the conceptual “leptons” and “L particles” of Section III.

An interesting remark about the baryon mass differences may be added
at this point. If we assume that they transform like the ;-e mass difference,
that is, like the 8th component of the unitary spin, then there are only two
possible mass-difference matrices, Fy and Dg. That gives rise to a sum rule
for baryon masses:

1 3 1
i(mN + mg) = ZmA + ng N (48)
which is very well satisfied by the observed masses, much better than the
corresponding sum rule for global symmetry.

There is no particular reason to believe, however, that the analogous sum
rules for mesons are obeyed.

V. Vector Mesons

The possible transformation properties of the vector mesons under F
are the same as those we have already examined in the pseudoscalar case.
Again it seems that for low mass states we can safely ignore the representa-
tions 27, 10, and 10. We are left with 1 and the two cases of 8.

A vector meson transforming according to 1 would have ) = 0, I = 0,
Y = 0 and would be coupled to the total baryon current i N 7, N, which is
exactly conserved. Such a meson may well exist and be of great importance.
The possibility of its existence has been envisaged for a long time.

We recall that the conservation of baryon of baryons is associated with
the invariance of the theory under infinitesimal transformations

N = (1+ie)N, (5.1)

where € is a constant. This is gauge-invariance of the first kind. We may,
however, consider the possibility that there is also guage invariance of the
second kind, as discussed by Yang and Lee [12]. Then we could make e
a function of space-time. In the free baryon Lagrangian

Ly = —N(aOs +mo)N (5.2)
this would produce a new term

Ly — Ly —iNYaNO,e (5.3)
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which can be cancelled only if there exists a neutral vector meson field B,
coupled to the current N+, /N:

1
Ly = =7(0aBs — 93B.)*
Liy = if. NY,N B, (5.4)
and which undergoes the gauge transformation
1
B, — B, + f—aae . (5.5)

As Yang and Lee pointed out, such a vector meson is massless and if it
existed with any appreciable coupling constant, it would simulate a kind of
anti-gravity, for baryons but not leptons, that is contradicted by experiment.

We may, however, take the point of view that there are vector mesons as-
sociated with a gauge-invariant Lagrangian plus a mass term, which breaks
the gauge invariance of the second kind while leaving inviolate the gauge
invariance of the first kind and the conservation law. Such situations have
been treated by Glashow [13], Salam and Ward [14], and others, but partic-
ularly in this connection by Sakurai [3].

The vector meson transforming according to 1 would then be of such a
kind. Teller [11], Sakurai [3], and others have discussed the notion that such
a meson may be quite heavy and very strongly coupled, binding baryons
and anti-baryons together to make the pseudoscalar mesons according to
the compound model of Fermi and Yang [15]. We shall leave this possi-
bility open, but not consider it further here. If it is right, then the Yukawa
couplings (4.7) must be treated as phenomenolofical rather than fundamen-
tal; from an immediate practical point of view, it may not make difference.

We go on to consider the 8 representation. An octet of vector mesons
would break up into an isotopic doublet with Y = 1, which we shall call
M (by analogy with K — the symbol L is already used to mean 7 or ); the
corresponding doublet M analogous to K; a triplet p with Y = 0 analogous
to 7; and a singlet w® with Y = 0 analogous to x°

We may tentatively identify M with the K* reported by Alston et al [10]
at 884 MeV with a width ' ~ 15 MeV for break-up into 7 + K. Such
a narrow width certainly points to a vector rather than a scalar state. The
vector meson p may be identified, as Sakurai has proposed, with the I = 1,
J =1, m-m resonance discussed by Frazer and Fulco [7] in connection with
the electromagnetic structure of the nucleon. The existence of w® has been
postulated for similar reasons by Nambu [8], Chew [9], and others.

In principle, we have a choice again between couplings of the D and the
F type for the vector meson octet. But there is no question which is the
more reasonable theory. The current 1N Fj7, N is the current of the F-spin
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for baryons and in the limit of unitary symmetry the total F-spin current is
exactly conserved. (The conservation of the strangeness-changing currents,
those of Fy, F5, Fi and F%, is broken by the mass differences, the conserva-
tion of F; and Fj by electromagnetism, and that of F3 and Fg separately by
the weak interactions. Of course, the current of the electric charge

Q=e (F3 + %) (5.6)

is exactly conserved.)

Sakurai has already suggested that p is coupled to the isotopic spin cur-
rent and w to the hypercharge current. We propose in addition that the
strange vector mesons M are coupled to the strangeness-changing compo-
nents of the F'-spin current and that the whole system is completely invari-
ant under F before the mass-difference have been turned on, so that the
three coupling constants (suitably defined) are approximately equal even in
the presence of the mass differences.

Now the vector mesons themselves carry /' spin and therefore contribute
to the current which is their source. The problem of constructing a nonlinear
theory of this kind has been completely solved in the case of isotopic spin by
Yang and Mills [5] and by Shaw [5]. We have only to generalize their result
(for three vector mesons) to the case of F' spin and eight vector mesons.

We may remark parenthetically that the Yang-Mills theory is irreducible,
in the sense that all the 3 vector mesons are coupled to one another inex-
tricably. We may always make a “reducible” theory by adjoining other,
independent vector mesons like the field B, discussed earlier in connection
with the baryon current. It is an interesting mathematical problem to find
the set of all irreducible Yang-Mills tricks. Glashow and the author [16]
have shown that the problem is the same as that of finding all the simple Lie
algebras, one that was solved long ago by the mathematicians. The possible
dimensions are 3, 8, 10, 14, 15, 21 and so forth. Our generalization of the
Yang-Mills trick is the simplest one possible.

But let us “return to our sheep”, in this case the 8 vector mesons. We first
construct a completely gauge-invariant theory and then add a mass term for
the mesons. Let us call the eight fields p;,, just as we denoted the eight
pseudoscalar fields by m;. We may think of the Nj;, the m;, and the p;, as
vectors in an 8-dimensional space. (The index « here refers to the four
space-time components of a vector field.) We use our totally antisymmetric
tensor f;;;, to define a cross product

(A xB); = fijxA;By . (5.7)
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The gauge transformation of the second kind analogous to (5.1) and (5.5) is
performed with an eight-component gauge function ¢

N—-N+¢xN

Po = Po+ DX Py —(27) 0.0
T 4+T+ X, (5.8)

We have included the pseudoscalar meson field for completeness, treating
it as elementary. We shall not write the 7-/N and possible -7 couplings in
what follows, since they are not relevant and may simply be added in at the
end. The bare coupling parameter is 7o.

We define gauge-covariant field strengths by the relation

Gop = 0aPg — OPo + 270P0 X P (5.9)

and the gauge-invariant Lagrangian (to which a common vector meson mass
term is presumably added) is simply

1 _ _
L= fZGaﬁ X Gaog —mMoN X N — Nvya x (0,N + 27,p, x N)
1 1
- 5;1371' X T — 5(8(177 + 295, X ) X (Oum + 2795p, X T) .
(5.10)

There are trilinear and quadrilinear interactions amongst the vector mesons,
as usual, and also trilinear and quadrilinear couplings with the pseudoscalar
mesons. All these, along with the basic coupling of vector mesons to the
baryons, are characterized in the limit of no mass differences by the single
coupling parameter 7,. The symmetrical couplings of p, to the bilinear
currents of baryons and pseudoscalar mesons are listed in Table IV. In
section VII, we shall use them to predict a number of approximate relations
among experimental quantities relevant to the vector mesons.

As in the case of the pseudoscalar couplings, the various vector couplings
will have somewhat different strengths when the mass differences are in-
cluded, and some couplings which vanish in (5.10) will appear with small
coefficients. Thus, in referring to experimental renormalized coupling con-
stants (evaluated at the physical masses of the vector mesons) we shall use
the notation Yy aar, Yan,» €tc. In the limit of unitary symmetry, all of these
that do not vanish are equal.

VI. Weak Interactions

So far, the role of the leptons in unitary symmetry has been purely sym-
bolic. Although we introduced a mathematical F' for v,e~, and p~, that
spin is not coupled to the eight vector mesons that take up the F' spin gauge
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for baryons and mesons. If we take it seriously at all, we should probably
regard it as a different spin, but one with the same mathematical properties.

Let us make another point, which may seem irrelevant but possibly is
not. The photon and the charge operator to which it is coupled have not
so far been explicitly included in our scheme. They must be put in as an
afterthought, along with the corresponding gauge transformation we have
treated. If the weak interactions are carried [17] by vector bosons X, and
generated by a gauge transformation [18, 19] of their own, then these bosons
and gauges have been ignored as well. Such considerations might cause us,
if we are in a highly speculative frame of mind, to wonder about the possi-
bility that each kind of interaction has its own type gauge and its own set of
vector particles and that the algebraic properties of these gauge transforma-
tions conflict with one another.

When we draw a parallel between the “F’ spin” of leptons and the F
spin of baryons and mesons, and when we discuss the weak interactions
at all, we are exploring phenomena that transcend the scheme we are us-
ing. Everything we say in this section must be regarded as highly tentative
and useful only in laying the groundwork for a possible future theory. The
same is true of any physical interpretation of the mathematics in Sections II
and IIL.

We shall restrict our discussion to charge-exchange weak currents and
then only to the vector part. A complete discussion of the axial vector weak
currents may involve more complicated concepts and even new mesons [20]
(scalar and/or axial vector) lying very high in energy.

The vector weak current of the leptons is just Uy,e + Uy . If we look
at the abstract scheme for the baryons in (3.5), we see that a baryon current
with the same transformation properties under F' would consist of two parts:
one, analogous to 7y,e, would have |AI| = 1 and AS = 0, while the other,
analogous to 77y, u, would have |AI| = 1/2 and AS/AQ = +1. These
properties are exactly the ones we are accustomed to associate with the
weak interactions of baryons and mesons.

Now the same kind of current we have taken for the leptons can be as-
signed to the conceptual bosons L of Section III. Suppose it to be of the
same strength. Then, depending on the relative sign of the lepton and L
weak currents, the matrices in the baryon system may be F’s or D’s.

Suppose, in the AS = 0 case, the relative sign is such as to give F'. Then
the resulting current is just one component of the isotopic spin current; and
the same result will hold for mesons. Thus we will have the conserved
vector current that has been proposed [17] to explain the lack of renormal-
ization of the Fermi constant.

In the AS = 1 case, by taking the same sign, we could get the almost-
conserved strangeness-changing vector current, the current of F + ¢F5.
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Further speculations along these lines might lead to a theory of the weak
interactions [21].

VII. Properties of the New Mesons

The theory we have sketched is fairly solid only in the realm of the strong
interactions, and we shall restrict our discussion of predictions to the inter-
actions among baryons and mesons.

We predict the existence of 8 baryons with equal spin and parity follow-
ing the pattern of N, A, and =. Likewise, given the 7 and its coupling
constant, we predict a pseudoscalar K and a new particle, the x°, both cou-
pled (in the absence of mass differences) as in (4.7), and we predict pion
couplings to hyperons as in the same equation.

Now in the limit of unitary symmetry an enormous number of selection
and intensity rules apply. For example, for the reactions

PS meson + baryon — + PS meson + baryon,
there are only 7 independent amplitudes. Likewise, baryon-baryon forces
are highly symmetric. However, the apparent smallness of gf 7 for NKA
and N K'Y compared to N7 N indicates that unitary symmetry is badly bro-
ken, assuming that it is valid at all. We must thus rely principally on qual-
itative predictions for tests of the theory; in Section VIII we take up the
question of how quantitative testing may be possible.

The most clear-cut new prediction for the pseudoscalar mesons is the
existence of x°, which should decay into 2+ like the 7°, unless it is heavy
enough to yield 7" + 7~ + ~ with appreciable probability. (In the latter
case, we must have (7777) in an odd state.) x° — 3m is forbidden by
conservation of I and C. For a sufficiently heavy x°, the decay x° — 4 is
possible, but hampered by centrifugal barriers.

Now we turn to the vector mesons, with coupling pattern as given in Ta-
ble IV. We predict, like Sakurai, the p meson, presumably identical with
the resonance of Frazer and Fulco, and the w meson, coupled to the hyper-
charge. In addition, we predict the strange vector meson M, which may be
the same as the K* of Alston et al.

Some of these are unstable with respect to the strong interactions and
their physical coupling constants to the decay products are given by the
decay widths. Thus, for M — K + 7, we have

2’ kJS
Ty = Q'YMKW -~ (7.1)
AT m5,

where £ is the momentum of one of the decay mesons. We expect, of course,
a cos” # angular distribution relative to the polarization of M and a charge
ratio of 2 : 1 in favor of K° + 7t or K+ + 7.
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For the I = 1, J = 1, -7 response we have the decay p — 27 with
width ,

8Vorn K3
= 2o & (72)

P 3 4rn mf,

r

. 2 .
Using a value m, = 4.5m,, we would I" ~ mﬂZ—ﬂ and agreement with the

theory of Bowcock et al [7] would require a value of fg of the order of 2/3.
If, now, we assume that the mass of M is really around 880 Meyv, the (7.1)

yields 'y, =~ g x 50 MeV. If the width is around 15 Meyv, then the two
values of 72 /4 are certainly of the same order.

We can obtain information about vector coupling constants in several
other ways. If we assume, with Sakurai and Dalitz, that the Y* of Alston
et al [22] (at 1380 MeV with decay Y* — 7 + A) is a bound state of K
and N in a potential associated with the exchange of w and p, then with
simple Schrodinger theory we can roughly estimate the relevant coupling
strengths. In the Schrédinger approximation (which is fairly bad, of course)
we have the potential

V (triplet) ~ _ g INNwTK K ¢  INNPTK Ky e
47 r 47
If w has a mass of around 400 MeV (as suggested by the isoscalar form
factor of the nucleon), then the right binding results with both 72 /47 of the
order of 2/3.
A most important result follows if this analysis has any element of truth,

since the singlet potential is

(7.3)

—myr

YNNw VK Kw € _ g INNOVKEp e e

47 T 47 T
A singlet version of Y* should exist considerably below the energy of Y * it-
self. Call it Y. If it is bound by more than 100 MeV or so, it is metastable
and decays primarily into A + v, since A + 7 is forbidden by charge in-
dependence. Thus, Y. is a fake X°, with I = 0 and different mass, and
may have caused some difficulty in experiments involving the production
of ¥° at high energy. If, because of level shifts due to absorption, Y;" is not
very far below Y, then it should be detectable in the same way as Y*; one
should observe its decay into m + 2.

Bound systems like Y* and Y} should occur not only for K N but also
KZ=. (In the limit of unitary symmetry, these come to the same thing.)

The vector coupling constants occur also in several important poles. (For
the unstable mesons, these are of course not true poles, unless we perform
an analytic continuation of the scattering amplitude onto a second sheet, in
which case they become poles at complex energies; they behave almost like
true poles, however, when the widths of the vector meson states are small.)

V (triplet) ~ —3 (7.4)
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There is the pole at ¢*> = —m?3, in the reactions 7~ +p — A + K° and
T~ 4+ p — w+ K; apeaking of K in the forward direction has already been
observed in some of these reaction and should show up at high energies in
all of them. Likewise, the pole ¢> = —m? in the reaction K + N — M +
N should be observable at high energies and its strength can be predicted
directly from the width of M. In the reactions 7 + N — A + M and
7+ N — ¥ + M, there is a pole at ¢> = —m? and measurement of its
strength can determine the coupling constants g3, /47 and g3 xx,/47 for
the K meson.

In 7N scattering, we can measure the pole due to exchange of the p
meson. In KN and K N scattering, there are poles from the exchange of p
and of w; these can be separated since only the former occurs in the charge-
exchange reaction. In NN scattering with charge-exchange, there is a p
meson pole in addition to the familiar pion pole. Without charge exchange,
the situation is terribly complicated, since there are poles from 7, p, w, =
and B.

When the pole term includes a baryon vertex for the emission or absorp-
tion of a vector menson, we must remember that there is a “strong magnetic”
term analogous to a Pauli moment as well as the renormalized vector meson
coupling constant.

In a relatively short time, we should a considerable body of information
about the vector mesons.

VIII. Violations of Unitary Symmetry

We have mentioned that within the unitary scheme there is no way that
the coupling constants of K to both NA and N can both be much smaller
than 15, except through large violations of the symmetry. Yet experiments
on photoproduction of K particles seem to point to such a situation. Even
if unitary symmetry exists as an underlying pattern, whatever mechanism
is responsible for the mass differences apparently produce a wide spread
among the renormalizes coupling constants as well. It is true that the bind-
ing of A particles in hypernuclei indicates a 7 A3 coupling of the same order
of magnitude as the 7NN coupling, but the anomalously small renormal-
ized constants of the K meson indicate that a quantitative check of unitary
symmetry will be very difficult.

What about the vector mesons? Let us discuss first the p and w fields,
which are coupled to conserved currents. For typical couplings of these
fields, we have the relations

Vorr = Vez3(p)[Vap(0)] 2, (8.1)
Yoy =Voz3(p) [Vap(0)] 72, (8.2)
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Vonn = Vozs(w)[Viw(0)] 72, (8.3)

etc. Here, each renormalized coupling constant is written as a product
of the bare constant, a vacuum polarization renormalization factor, and
a squared form factor evaluated at zero momentum transfer. The point is
that at zero momentum transfer there is no vertex renormalization because
the source currents are conserved. To check, for example, the hypothesis
that p is really coupled to the isotopic spin current, we must check that 2
in (8.1) is the same as 2 in (8.2). We can measure (say, by “pole experi-
ments” and by the width of the 7-7 resonance) the renormalized constants
on the left. The quantities V2 are of the order unity in any case, and their
ratio can be measured by studying electromagnetic form factors [23].

The experimental check of “universality” between (8.1) and (8.2) is thus
possible, but that tests only the part of the theory already proposed by Saku-
rai, the coupling of p to the isotopic spin current. To test unitary symmetry,
we must compare (8.2) and (8.3); but the the ratio z3(p)/z3(w) comes in
to plague us. We may hope, of course, that this ratio is sufficiently close
to unity to make the agreement striking, but we would like a better way of
testing unitary symmetry quantitatively.

When we consider the M meson, the situation is worse, since the source
current of M is not conserved in the presence of the mass differences. For
each coupling of M, there is a vertex renormalization factor that compli-
cates the comparison of coupling strengths.

An interesting possibility arises if the vector charge-exchange weak cur-
rent is really given in the |AS| = 1 case by the current of F); +iF} just as it
is thought to be given in the AS = 0 case by that of F} +iF, (the conserved
current) and if the AS = 0 and [AS| = 1 currents are of equal strength,
like the e, and p,, currents. Then the leptonic |[AS| = 1 decays show renor-
malization factors that must be related to the vertex renormalization factors
for the M meson, since the source currents are assumed to be the same.
The experimental evidence on the decay K — m+ leptons then indicates
a renormalization factor, in the square of the amplitude, of the order of 1/20.
In the decays A — p+ leptons and 3~ — n+ leptons, both vector and axial
vector currents appear to be renormalized by comparable factors.

The width for decay of M into K + m, if it is really about 15 MeV,
indicates that the renormalized coupling constant 7% _,,/47 is not much
smaller than fyim /4m ~ 2/3 and so there is at present no sign of these small
factors in the coupling constants of M. It will be interesting, however, to
see what the coupling constant 7%, ,,/47 comes out, as determined from
thepoleinm™ +p — A+ K°.

We have seen that the prospect is rather gloomy for a quantitative test
of unitary symmetry, or indeed of any proposed higher symmetry that is
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broken by mass differences or strong interactions. The best hope seems
to lie in the possibility of direct study of the ratios of bare constants in
experiments involving very high energies and momentum transfers, much
larger than all masses [24]. However, the theoretical work on this subject is
restricted to renormalizable theories. At present, theories of the Yang-Mills
type with a mass do not seem to be renormalizable [25], and no one knows
how to improve the situation.

It is in any case an important challenge to theoreticians to construct a sat-
isfactory theory of vector mesons. It may be useful to remark that the diffi-
culty in Yang-Mills theories is caused by the mass. It is also the mass which
spoils the gauge invariance of the first kind. Likewise, as in the p-e case,
it may be the mass that produces the violation of symmetry. Similarly, the
nucleon and pion masses break the conservation of any axial vector current
in the theory of weak interactions. It may be that a new approach to the rest
masses of elementary particles can solve many of our present theoretical
problems.
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TABLE II. Non-zero elements of f;;;, and d;j;. The f;;, are
odd under permutations of any two indices while the d;;;, are

cven

igk  fyr gk dij
122 1 118 1//3
147 172 146 1/2
156 —1/2 157 1/2
246 172 228  1/V/3
257 12 247 —1/2
345 112 256 1/2
367 —1/2 338  1/4/3
458 /3/2 344 1/2
678 /3/2 355 1/2
366 —1/2
377 —1/2
448 —1/(2V/3)
558 —1/(2/3)
668 —1/(2/3)
778 —1/(2V/3)
888 —1/v/3

\—/ooo
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TABLE III. Yukawa interactions of pseudoscalar mesons
with baryons, assuming pure coupling through D

2 __ 9 o
Lin/ig, = 7 {pysp — Aysn 4+ —=S5A + —=AysE° — Zors=°
J/ig {pysp — nvs A+ ks Vs

2
—A’}%Ei

V3

. 9
+EET 4+ mH{V2sn + =T A +

V3
— \/5@’}/55_} + h.C.

1 1 - —
+ K {——=pysA + PysE° + V208~ — —=AysE + D02

V3 V3
+\/§F’Y5EO}
+ h.c.
LRy A 4 s 4 VISt — o RES — =
V3 ’ V3
+\/_E_75: }
+ h.c.
1 1 2 9
+ X {——=pvsp — —=fiysn — —=AysA + =Sty 2t
x{ N Y Lyt iy T
b AT 4 T s — —FoaEe F:}
\/g V5 \/g Vs \/g‘—‘ V5= \/——' —
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TABLE III. (cont.) Yukawa interactions of pseudoscalar
mesons with baryons, assuming pure coupling through F

Lin/ig, = 7°(pysp — Rysn + 25357 — 25957 + Z0952° — -5 7)
+ 7 (V2pysn — V2EPysET — 25F955° 4 250955 7)
+ h.c.
+ K+(—\/§ﬁ’Y5A + VBAYET — pysE° — V2T + T2
+ \/EF’YE’,EO)
+ h.c.
+ K°(—V3aysA + VBAE® — iysX® — V2P BT — S0 E°
+ \/§F7537)
+ h.c.
+X°(V3Pysp + V3Rysn — V3E0sE° — VBET5E0)
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TABLE IV. Trilinear couplings of p’s to 7’s and N’s

Lint )17y = M {—=V307a\ + V3AYE™ — §7a5° — V27,5~
+ 309,27 4+ V2E Y — VBK 0, x° 4+ V3X 0. K~
— K™ 0,7° 4+ 1°0, K~ — V2K°0,m~ + V21~ 0,K°}
+ h.c.
+ M —V3ivaA + VBAYLE® 4 17aX° — V27, 5"
— Yoy, B0 + ﬂ?fyaEf — ﬁﬁaaxf’ + \/§x°aaK°
+ K0, — 10, K° — V2K 0,1 + V210, K~}
+ h.c.
+ pE{V2Dyan — V2EY,ET — 25T, 3° 4 25°9,5"
+ V2K 0, K° — V2K°0, K~ — 21 0,7° 4 27°0, 7 }
+ h.c.
+ P2 {PVal — PYal + 25T 7, BT — 2877, 87 + E0,=°
— E B 4+ K 0K — KT0, K~ — K°0,K°
+ K°0,K° 4 21 Oyt — 20t 0,7 7}
+ Wi {V3PYap + V3ityan — V3E.E" — V3ETY.E"
+VBK 0, Kt — V3K, K~ 4 V3K°0,K°
— V3K°9,K°}
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TABLE V. Transformation properties of baryons and
mesons, assuming pseudoscalar mesons coupled through D

uty 4+ StDe
RV
pte” 4+ STD~
V2
. ewv+ DD
T~ — 5
vv —ete”™ + D°D° — DY D~
2
ve- +D°D~
V2

vv+ete” —2utp~ + D°D° + DYD™ —25+S5-

K+

K° ~

[¢]

Tmw ~

i ~Y

[¢]

XN

V12
7 et~ 4+ DS~
V2
K vp~ + D°S™
V2
p~ STy n~Ste”
D°v — Dte”

>t~ Dty X~
V2

o Fo— _ + -
S o Do ANDV+D e 25T

V6
E° ~ Dty = ~ D%
Y+ uty — StDe
V2
M pte” — STD~

V2
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TABLE V. (Cont.)

+ €ev—=DtDe°

g V2
., ww—ete = D°D°+ D*D~
P~ 5
. veT —=D°D~
g V2
., v+ete —2utu~ — D°D° — DYD™ 2SS~
w ~
V12
e ety — DTS~
V2
M~ v~ — DS
V2
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The fundamental representation of the isospin group SU(2) is the doublet representation.
The proton and the neutron are described by a doublet. The fundamental representation of
SU(3) is the triplet representation, but in nature there are no hadrons, which transform as a
triplet—the hadrons are described only by singlets, octets and decuplets. This feature of the
SU(3) symmetry was not understood until 1964.

In this year Murray Gell-Mann suggested that the hadrons are composite particles. The
constituents of the hadrons are SU(3) triplets, the “quarks”. They are spin (1/2) fermions.
There are three quarks, an up quark, a down quark and a strange quark:

qg=>\|d
d

The charge of the up quark is (2/3), the charges of the down quark and of the strange
quark are (—1/3). The SU(3) transformations are unitary transformations of the three
quarks. The isospin subgroup SU(2) is given by the transformations of the u-quark and
the d-quark.

Inside the proton are two up quarks and one down quark: p ~ (uud). If the u quark and
the d quark are interchanged, one obtains the neutron: n ~ (ddu). The number of strange
quarks inside a hadron is related to the strangeness of the hadron—it is minus the number of
strange quarks inside the hadron. The A-hyperon and the Z-hyperons have strangeness
(—1), e.g. A ~ (uds). Inside the two E-hyperons are two strange quarks:

Z(0)~(uss), E(—)~(dss).
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It would have been better to use a different sign for the strangeness, but this became
clear within the quark model, proposed in 1964, 11 years after the introduction of the

strangeness.
Here are the eight baryons with their substructure:

n(ddu) | p(uud)

0 d
Al(u s.)

T (uus)

.Z U(le:i)

0

—_
™

(ssu)

These baryons are fermions with the spin 4. The spin is the sum of the spins of the three
quarks. Two quarks are aligned, the spin of the third quark is opposite—thus the sum is %.
There is no contribution from the angular momentum, since the three quarks are in the

ground state.
The ten baryon resonances with spin 3/2 have the following substructure:
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Here the spins of the three quarks are aligned.

The Q-baryon consists of three strange quarks. It is the only spin (3/2) particle, which
does not decay via the strong interactions. It decays weakly and has a relatively long
lifetime.

The nine pseudo-scalar mesons are bound states of a quark and an antiquark. The
product of a triplet and an anti-triplet gives a singlet and an octet: 3 x 3* =1 + &:

ko S K*
sd

/N

1
0
-1 48 -1/2 A7) —
— ad ~H—"%dd —"2— qu 1 —

XN

Also the vector mesons are described by an octet and a singlet. The pi mesons are
replaced by the rho mesons, the K mesons by the K* mesons, the n-meson by a superposi-
tion of the w-meson and the @-meson. The w-meson is mainly a bound state of up and down
quarks, the @-meson is mainly composed of strange quarks. Thus there is a large mixing
between the SU(3) octet state and the singlet state:

K*0 K*t

Inside the pseudoscalar mesons the spins of the two quarks are opposite to each other,
thus the quarks do not contribute to the angular momentum. Inside the vector mesons the
spins are aligned. The spin of a vector meson is provided by the spins of the two quarks.

Gell-Mann thought that the quarks are either mathematical symbols or real particles. In
this case they should exist in nature as stable particles with non-integral electric charges.
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One has searched for quarks with accelerators, in cosmic rays or in stable matter, but
nothing has been found.

Today we think that quarks are real particles, but they do not exist as free particles—
they are confined inside the hadrons by the strong force. Nevertheless the quarks have
specific masses, which can be deduced from the spectrum of hadrons. Here are the masses
of the three quarks:

m, ~ 2.3MeV,
mg ~ 4.8 MeV,
my; ~ 95 MeV.

The masses of the quarks describe the breaking of the SU(3) symmetry. If the masses of
the three quarks would be the same, this symmetry would be unbroken. The mass term for
the three quarks can be decomposed into a SU(3)-singlet, an octet and a triplet:

myitu + mgdd + mydd =

1 -

g(mu + mg + my) - (itu + dd + dd)+

1 _

g(mu + mg — 2my) - (itu + dd — 25s5)+
1 _

E(mu —my) - (tiu — dd).

The large difference between the strange quark mass and the up or down quark mass
implies the large violation of the SU(3) symmetry. Thus the large symmetry breaking is
understood. The isospin symmetry is also broken by the quark mass term—the down quark
mass is larger than the up quark mass. This implies that the neutron mass is larger than the
proton mass.

Thus far the quark masses cannot be calculated. As the masses of the leptons they are
free parameters and have to be measured in the experiments.

In 1974 new heavy hadrons were discovered. They can be described by another quark,
the charmed quark. The first new particle, which has been seen, was a vector meson “J/y”,
which is a bound state of a charmed quark and an anti-charmed quark, analogous to the
@-meson—a bound state of a strange quark and an anti-strange quark.

Since the mass of the “J/y” meson is about 3.1 GeV, the mass of the charmed quark is
quite large, about 1.27 GeV. Hadrons, which consist of a charmed quark, have large
masses. The charmed baryon with the substructure “udc” has a mass of about 2286 MeV.

It is useful to describe the four quarks as two doublets:

(@) ()
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In 1977 a new heavy meson was discovered at Fermilab, the upsilon meson (Y), with a
mass of about 9.46 GeV. This meson is a bound state of the new quark, the bottom quark b,
and its antiquark. The electric charge of the b-quark is (—1/3), its effective mass about
4.16 GeV.

B mesons are composed of a bottom antiquark and an up, down, strange or charm quark.
The meson, which consists of an anti-up quark and a b quark, has a mass of about
5.28 GeV. The mass of the lightest baryon with the substructure “udb” is about 5620 MeV.

When the b quark was observed, it was assumed that there must also be another quark
with the electric charge (2/3), the top quark. In 1995 effects due to the top quark were
discovered at the Fermi National Laboratory near Chicago. The mass of the top quark is
very large, similar to the mass of a wolfram atom, about 172 GeV.

The top quark decays mainly to a W boson and a bottom quark. The Standard Theory
predicts its mean lifetime to be roughly 5 x 1072 s. This is about a 20th of the timescale
for strong interactions—therefore the top quark does not have enough time to form
hadrons.

Nature is described by six quarks. Thus far no other quarks have been observed. It is
useful to describe the six quarks as three doublets:

u c t
(2) () )

The doublets describe the properties of the quarks with respect to the weak interactions.
These interactions are generated by the exchange of very massive vector bosons, the weak
bosons. There are two charged weak bosons, W(+) and W(—), and a neutral boson, the
Z-boson.

If a charged weak boson interacts with a quark, the charge of the quark changes, e.g. u
= d. In this way the weak decays are described. For example the beta decay of the neutron
follows from the weak transition of a d-quark into a u-quark. The positively charged pion

decays into a muon and a neutrino. The quark and the antiquark inside the pion produce a
virtual weak boson, which decays into a muon and a neutrino:

u ©* (ps)

frr

=W

Vy (p4)
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But there is also a weak transition from an s-quark to the u-quark. It is a small effect due
to the flavor mixing of the quark. When a weak boson interacts with the u-quark, a
superposition of the three quarks d, s and b is produced. This state is described by the
three electroweak mixing angles. The transition from the u-quark to the b-quark is very
small and we shall neglect it. Then one obtains a mixture of a d-quark and an s-quark:

u=d-cos@+s- sinf.

The mixing angle is called the “Cabibbo angle”. It has been measured to about
13 degrees. Thus far the phenomenon of flavor mixing is still not understood. Presumably
the mixing angles are functions of the quark masses.

In 1968 the quarks inside the nucleons were observed. The experiments were carried out
at the Stanford Linear Accelerator Center. High energy electrons or positrons were
accelerated up to 50 GeV and collided with atomic nuclei. The cross section depends on
two variables, the mass of the virtual photon, emitted by the lepton, and the energy transfer
from the lepton to the hadron. But it was observed, that at high energies the cross section
depends only on the ratio of these two variables.

Richard Feynman pointed out, that this phenomenon, the “scaling behavior” of the cross
section, could be understood, if the leptons collided inside the atomic nuclei with point-like
constituents. Feynman introduced that name “partons” for these constituents. Later it
turned out that the partons were the quarks. Thus the quarks became real particles, which
were confined inside the hadrons.

In 1970 Harald Fritzsch and Murray Gell-Mann derived the results of the parton model,
using the algebra of currents. In deep inelastic scattering one studies the commutator of two
electromagnetic currents near the light cone. Fritzsch and Gell-Mann assumed that this
commutator is given by the free quark model. Thus the interaction among the quarks
should disappear near the light cone. In this way they could derive the scaling behavior and
the results of the parton model.

The quark model has two problems. One is related to the electromagnetic decay of the
neutral pion. If the pion is considered to be a bound state of a nucleon and an antinucleon,
one can calculate the decay rate. The pion couples to a nucleon-antinucleon pair, which
annihilates into two photons. The result agrees with the measured decay rate. But if the pion
is assumed to be a bound state of a quark and an antiquark, the decay rate is about an order
of magnitude smaller than the observed decay rate.

Another problem is related to the Pauli principle. We consider as an example the
Q-baryon. If quarks are Fermi-Dirac particles, the Pauli principle requires, that the wave
function must be anti-symmetric, if two quarks are interchanged. But the wave function of
the Q-baryon is symmetric, since it is a bound state of three strange quarks, and the space
wave function is also symmetric, since the three quarks are in the ground state. Thus the
Pauli principle is violated. These problems will be solved by introducing a new quantum
number, as discussed in the next chapter.
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If we assume that the strong interactions of bary-
ons and mesons are correctly described in terms of
the broken "eightfold way" 1-3), we are tempted to
look for some fundamental explanation of the situa-
tion. A highly sromised approach is the purely dy-
namical "boo! trap" model for all the strongly in-
teracting particles within which one may try to de-
rive isotopic spin and strangeness conservation and
broken eightold symmetry from self-consistency
alone *). Of course, with only strong interactions,
the orientation of the asymmetry in the unitary
space cannot be specified; one hopes that in some
way the selection of specific components of the F-
8pin by electromagnetism and the weak interactions
determines the choice of isotopic spin and hyper-
charge directions.

Even if we consider the scattering amplitudes of
strongly interacting particles on the mass shell only
and treat the matrix elements of the weak, electro-
magnetic, and gravitational interactions by means
of dispersion theory, there are still meaningful and
important questions regarding the algebraic proper-
ties of these interactions that have so far been dis-
cussed only by abstracting the properties from a
formal field theory model based on fundamental
entities 3) from which the baryons and mesons are
built up.

If these entities were octets, we might expect the
underlying symmetry group to be SU(8) instead of
8U(3); it is therefore tempting to try to use unitary
triplets as fundamental objects. A unitary triplet t
consists of an isotopic singlet s of electric charge z
{in units of €) and an isotopic doublet (u, d) with
charges z+1 and z respectively. The anti-triplet
has, of course, the opposite signs of the charges.
Complete symmetry among the members of the
triplet gives the exact eightfold way, while a mass
difference, for example, between the isotopic dou-
blet and singlet gives the first-order violation.

For any value of z and of triplet spin, we can
construct baryon octets from a basic neutral baryon
singlet b by taking combinations (btf), (btttt),
etc. **. From (btf), we get the representations 1
and 8, while from (bttt?) we get 1, 8, 10, 10, and
27. In a similar way, meson singlets and octets can
be made out of (tt), (tttf), etc. The quantum num-

214

ber ny - nf would be zero for all known baryons and
mesons. The most interesting example of such a
model is one in which the triplet has spin & and

z = -1, so that the four particles d*, s5~, u® and b°
exhibit a parallel with the leptons.

A simpler and more elegant scheme can be
constructed if we allow non-integral values for the
charges. We can dispense entirely with the basic
baryon b if we assign to the triplet t the following
properties: spin 3, z = -}, and baryon number 3.
We then refer to the members ud, d-3, and s-7 of
the triplet as "quarks" 6) q and the members of the
anti-triplet as anti-quarks §. Baryons can now be
constructed from quarks by using the combinations
{qqq), (@qqaq), etc., while mesons are made out
of (qd), (qqdq), etc. It is assuming that the lowest
baryon configuration (qqq) gives just the represen-
tations 1, 8, and 10 that have been observed, while
the lowest meson configuration (qq) similarly gives
just 1 and 8.

A formal mathematical model based on field
theory can be built up for the quarks exactly as for
p, 0, A in the old Sakata model, for example 3)
with all strong interactions ascribed to a neutral
vector meson field interacting symmetrically with
the three particles. Within such a framework, the
electromagnetic current (in units of €) is just

fluovgu-4dyyd- 8y, s}

or F3, + Fgy /3 in the notation of ref. 3). For the
weak current, we can take over from the Sakata
model the form suggested by Gell-Mann and Lévy 7),
namely i By o(1+75)(n cos 6 + A sin 6‘];‘ which gives
in the quark scheme the expression s

iU yg(l +¥5)(d cos & + 5 sin 6)

* Work supported in part by the U,S. Atomic Energy
Commission.
b Thiasis similar to the treatment in ref. 1), See also
ref. 9),

*** The parallel with i Ty v4(1 + vg) @ and i ? Yall + v5)e
is obvious, Likewise, in the model withd™, 8=, u®,
and b° discussed above, we would take the weak cur-
rent to be i(B° cos 8 + U sin 8) Ya(l + vs5) 8~
+ i(u® cos 8 - B9 sin 8 v4(1 + v5) d-. The part with
By =ng) =0 is just 1 G0 yg(1+y5)(d~ cos @ + 57 3in §).
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or, in the notation of ref. 3).
5 5,
(955 t Tiq * 1055, + 5, )| con'd

+[ﬁa+_¢;g+j(_¢5u+%§]}smﬁ.

We thus obtain all the features of Cabibbo's picture 8)

of the weak current, namely the rules |a/] =1,
AY=0and |af| =, AY/AQ = +1, the conserved
AY =0 current with coefficient cos @, the vector
current in general as a component of the current of
the F-spin, and the axial vector current transform-
ing under SU(3) as the same component of another
octet. Furthermore, we have ) the equal-time
commutation rules for the fourth components of the
currents:

(£ + F300, %,,60) %500 =
- 275 [#,00 + F4E) ot-x),
5 ' 5
(Fage) * a0 Figb) ¥ Gl =0,
i=1,...8, yielding the group SU(3) x SU(3). We

can also look at the behaviour of the energy density
644(x) (in the gravitational interaction) under equal-

time commutation with the operators F(x) + F45(x).

That part which is non-invariant under the group
will transform like particular representations of
SU(3) x SU(3), for example like (3, 3) and (3, 3) if it
comes just from the masses of the quarks.

All these relations can now be abstracted from
the field theory model and used in a dispersion the-
ory treatment. The scattering amplitudes for strong-
ly interacting particles on the mass shell are as-
sumed known; there is then a system of linear dis-
persion relations for the matrix elements of the
weak currents (and also the electromagnetic and
gravitational interactions) to lowest order in these
interactions. These dispersion relations, unsub-
tracted and supplemented by the non-linear com-
mutation rules abstracted from the field theory,
may be powerful enough to determine all the matrix
elements of the weak currents, including the effec-
tive strengths of the axial vector current matrix
elements compared with those of the vector current.

It is fun to speculate about the way quarks would
behave if they were physical particles of finite mass

(instead of purely mathematical entities as they
would be in the limit of infinite mass). Since charge
and baryon number are exactly cgnserved, one of
the quarks (presumably u3 or d-7) would be abso-
lutely stable *, while the other member of the dou-
blet would go into the first member very slowly by
B-decay or K-capture. The isotopic singlet quark
would presumably decay into the doublet by weak
interactions, much as A goes into N, Ordinary
matter near the earth's surface would be conta-
minated by stable quarks as a result of high energy
cosmic ray events throughout the earth's history,
but the contamination is estimated to be so small
that it would never have been detected. A search
for stable quarks of charge -} or +{ and/or stable
di-quarks of charge -} or +4 or +4 at the highest
energy accelerators would help to reassure us of
the non-existence of real quarks.

These ideas were developed during a visit to
Columbia University in March 1963 ; the author
would like to thank Professor Robert Serber for
stimulating them.
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Light Cone Current Algebra®
HARALD FRITZSCH** and MURRAY GELL-MANN!
PREFACE

Tms TALK follows by a few months a talk by the same

authors on nearly the same subject at the Coral Gables
Conference. The ideas presented herc are basically the same, but
with some amplification,some change of viewpoint, and a number
of new questions for the future. For our own convenience, we have
transcribed the Coral Gables paper, but with an added ninth
section, entitled **Problems of light cone current algebra’’, dealing
with our present views and emphasizing research topics that
require study.

1. INTRODUCTION

We should like to show that a number of different ideas of the
last few years on broken scale invariance, scaling in deep inelastic
electron-nucleon scattering, operator product expansions on the
light cone, ‘‘parton’’ models, and generalizations of current
algebra, as well as some new ideas, form a coherent picture.
One can fit together the parts of each approach that make sense
and obtain a consistent view of scale invariance, broken by
certain terms in the energy density, but restored in operator
commutators on the light cone.

We begin in the next section with a review of the properties
of the dilation operator D obtained from the stress-energy-mo-
mentum tensor 0, and the behavior of operators under equal-time

* Work supported in part by the U.S. Atomic Energy Commission under
contract AT(11-1)-68, San Francisco Operations Office.
** Max-Planck-Institut fiir Physik und Astrophysik, Miinchen, Germany.
Present address (1971-1972): CERN, Geneva, Switzerland.
t California Institute of Technology, Pasadena, California. Present
address: (1971-1972): CERN, Geneva, Switzerland.
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commutation with D, which is described in terms of physical
dimensions [ for the operators. We review the evidence on the
relation between the violation of scale invariance and the violation
of SU x 5U, invariance.

Next, in Section 3, we describe something that may seem at first
sight quite different, namely the Bjorken scaling of deep inelastic
scattering cross sections of electrons on nucleons and the inter-
pretation of this scaling in terms of the light cone commutator
of two clectromagnetic current operators. We use a generalization
of Wilson's work,! the light-cone expansion emphasized parti-
cularly by Brandt and Preparata’ and Frishman.® A different
definition | of physical dimension is thus introduced and the
scaling implics a kind of conservation of I on the light cone.
On the right-hand side of the cxpansions, the operators have
I = —J -2, where J is the leading angular momentum contained
in each operator and [ is the leading dimension.

In Section 4, we show that under simple assumptions the
dimensions [ and [ are essentially the same, and that the notions
of scaling and conservation of dimension can be widely generalized.
The essential assumption of the whole approach is seen to be that
the dimension ! (or /) of any symmetry-breaking term in the
energy (whether violating scale invariance or SU,xSU,;) is
higher than the dimension, — 4, of the completely invariant part
of the energy density. The conservation of dimension on the
light cone then assigns a lower singularity to symmetry-breaking
terms than to symmetry-preserving terms, pcrmitting the light-
cone relations to be completely symmetrical under scale,
SUj; x SU,, and perhaps other symmetries.

In Section 5, the power series cxpansion on the light cone is
formally summed to give bilocal operators (as briefly discussed by
Frishman) and it is suggested that these bilocal light-cone operators
may be very few in number and may form some very simple closed
algebraic system. They are then the basic mathematical entitics
of the scheme.

It is pointed out that several features of the Stanford experiments,
as interpreted according to the ideas of scaling, resemble the
behavior on the light cone of free field theory or of interacting
field theory with naive manipulation of operators, rather than the
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behavior of renormalized perturbation expansions of renorma-
lizable field theories. Thus free ficld theory models may be studied
for the purposc of abstracting algebraic relations that might be
true on the light conc in the real world of hadrons. (OF course,
matrix elements of operators in the real world would not in
general rescmble matrix elements in free field theory.) Thus in
Section 6 we study the light-cone behavior of local and bilocal
operators in {ree quark theory, the simplest interesting case.
The relevant bilocal operators turn out to be extremely simple,
namely just if2(q(x)Ay,9(y)) and if2(G(x)27,ysq(y)), bilocal generali-
zations of V and A currents. The algebraic system to which they
belong is also very simple.

In Section 7 we explore bricfly what it would mean if these
algebraic relations of free quark theory were really true on the
light cone for hadrons. We see that we obtain, among other
things, the sensible features of the so-called *‘parton’ picture of
Feynman® and of Bjorken and Paschos,® especially as formulated
more exactly by Landsholf and Polkinghorne,® Llewellyn Smith,”
and others. Many symmetry relations are true in such a theory,
and can be checked by deep inelastic experiments with electrons
and with neutrinos. Of course, some alleged results of the *‘parton™
model depend not just on light cone commutators but on detailed
additional assumptions about matrix elements, and about such
results we have nothing to say.

The abstraction of free quark light cone commutation relations
becomes more credible if we can show, as was done for equal time
charge density commutation relations, that certain kinds of non-
trivial intcractions of quarks leave the relations undisturbed,
according to the method of naive manipulation of operators, using
equations of motion. There is evidence that in fact this is so, in a
theory with a neutral scalar or pseudoscalar “‘gluon' having a
Yukawa interaction with the quarks. (If the “‘gluon™ is a vector
boson, the commutation relations on the light cone might be
disturbed for all we know.)

A special case is one in which we abstract from a model in which
there are only quarks, with some unspecified self-interaction,
and no *“‘gluons”. This corresponds to the pure quark case of
the **parton’ model. One additional constraint is added, namely
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the identification of the traceless part of ,, with the analog of the
traceless part of the symmetrized §y,6,9. This constraint leads to
an additional sum rule for deep inelastic electron and neutrino
cxperiments, a rule that provides a real test of the pure quark casc.

We do not, in this paper, study the connection between scaling
in electromagnetic and neutrino experiments on hadrons on the
one hand and scaling in “‘inclusive’” reactions of hadrons alone
on the other hand. Some approaches, such as the intuition of the
“*parton”’ theorists, suggest such a connection, but we do not
explore that idea here. It is worth reemphasizing, however, that
any theory of pure hadron behavior that limits transverse momenta
of particles produced at high energies has a chance of giving
the Bjorken scaling when electromagnetism and weak interactions
are introduced. (This point has been made in the cut-off models
of Drell, Levy, and Yan.®)

2. DILATION OPERATOR AND BROKEN SCALE
INVARIANCE®

We assume that gravity theory (in first order perturbation
approximation) applies to hadrons on a microscopic scale, al-
though oo way of checking that assertion is known. There is
then a symmetrical, conserved, local stress-encrgy-momentum
tensor 6,,(x) and in terms of it the translation operators P,,
obeying for any operator & (x), the relation

[0--(.P] = 1 4,0 (x), @
are given by
P, = JG_,d’x, (2.2)

Now we want to define a differential dilation operator D(r)
that corresponds to our intuitive notions of such an operator,
i.e., one that on equal-time commutation with a local operator
@ of definite physical dimension /,, gives

[0 (x), (D] = ix, 8,0 (x) — il 0 (x). (2.3)
We suppose that gravity selects a f,, such that this dilation opera-
tor D is given by the expression

D= —J-x_i?,,a‘ x. (2.4)
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It is known that for any renormalizable theory this is possible,
and Callan, Coleman, and Jackiw have shown that in such a case
the matrix clements of this 6,, are finite. From (2.4) we see that
the violation of scale invariance is connccled with the non-
vanishing of 8, since we have

dD = "
L J 0,,dx. @3)
Another version of the same formula says that
[D,Py] = = iPy— iJ A,d¥x (2.6)

and we sec from this and (2.3) that the energy denisty has a main
scale-invariant term aon (under the complete dilation operator D)
with | = —4 (corresponding to the mathematical dimension of
energy density) and other terms w, with other physical dimensions
I.. The simplest assumption (true of most simple models) is that
these terms are world scalars, in which case we obtain

=0 = g (l + 4)w,, 2.7
along with the definition

0oo = Ogo + T w,. (2.8)

We note that the breaking of scale invariance prevents D from
heing a world scalar and that cqual-time commutation with D
leads to a non-covariant break-up of opcrators into pieces with
different dimensions /.

To investigate the relation between the violations of scale
invariance and of chiral invariance, we make a still further sim-
plifying assumption (true of many simple models such as the
quark-gluon Langrangian model), namely that there are two
g-number w's, the first violating scale invariance but not chiral
invariance (like the gluon mass) and the second violating both
(like the quark mass):

Bop = D-M + & + u + const., (2.9)

with & transforming like (1,1) under SU; x SU,. Now how does
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u transform? We shall start with the usual theory that it all belongs
to a single (3, 3) + (3, 3) representation and that the smallness
of m}is to be attributed, in the spirit of PCAC, to the small
violation of SU, x SU, invariance by u. In that case we have

U= —Ug—cly, (2.10)

with ¢ not far from — /2, the value that gives SU, x SU, in-
variance and m2 = 0 and corresponds in a quark scheme to
giving a mass only to the s quark. A small amount of u, may be
present also, if there is a violation of isotopic spin conservation
that is not directly clectromagnetic; an expression containing
g, ty, and ug is the most general canonical form of a CP-con-
serving term violating SU,; x SU, invariance and transforming
like (3,3) + (3,3).
According to all these simple assumptions, we have

=0, = (I, + 98 1 (I, +4) — up — cuy) + 4 (const.)  (2.11)
and, since the expected value of ( — £,,) is 2m?, we have

0 = (|, + 4)(vac|é|vac) + (], + 4)(vac|u|vac) + 4(const.),
(2.12)

2m{(PS8) = (I, + 4)(PS,|5| PS)
(2.13)
+ (L + 4)(PS;|u| PS)>,

clc.

The question has often been raised whether & could vanish.
Such a theory is very interesting, in that the same term u would
break chiral and conformal symmetry. But is it possible?

It was pointed out a year or two ago'® that for this idea to
work, something would have to be wrong with the final result of
von Hippel and Kim'' who calculated approximately the “o
terms’™ in meson-baryon scattering and found, using our theory
of SUy x SU, violation, that (N |u| N was very small compared
to 2mj . Given the variation of (Blu!is} over the 1/2* baryon
octet, the ratio of (=|u|Z) to (N |u|N) would be huge if von
Hippel and Kim were right, and this disagrees with the value
m2/mj that obtains if & = 0.



60

H. Fritzsch

SPC on 06/06/17. For personal use only.

by W

Murray Gell-Mann Downloaded from www.worldscientific.com

171

LIGHT CONE CURRENT ALGEBRA ki)

Now, Ellis'? has shown that in lact the method of von Hippel
and Kim should be modified and will produce different results,
provided therc is a dilation. A dilation is a neutral scalar meson
that dominates the dispersion relations for matrix elements of
0,, at low frequency, just as the pseudoscalar octet is supposed to
dominate the relations for 3,%,. We are dealing in the case of
the dilaton, with PCDC (partially conserved dilation current)
along with PCAC (partially conserved axial vector current).
If we have PCAC, PCDC, and § = 0, we may crudely describe
the situation by saying that as u =0 we have chiral and scale
invariance of the energy, the massss of a pseudoscalar octet and
a scalar singlet go to zero, and the vacuum is not invariant under
cither chiral or scale transformations (though it is probably SU,
invariant). With the dilation, we can have masses of other particles
non-vanishing as u —0, cven though that limit is scale invariant.

Dashen and Cheng'? have just finished a different calculation
of the “‘o terms’” not subject to modification by dilation effects,
und they find, using our description of the violation of chiral
invariance, that (NFu|N) at rest is around 2mJ, a result per-
fectly compatible with the idea of vanishing & and yiclding in that
case a value /, ® — 3 (as in a naive quark picture, where u is a
quark mass term!).

An argument was given last year '“that if § = 0, the value of
I, would have to be —2 in order to preserve the perturbation
theory approach for m*(PS 8), m*(PS 8) oc u, which gives the
right mass formula for the pseudoscalar octet. Ellis, Weisz, and
Zumino'* have shown that this argument can be evaded if there
is a dilation.

Thus at present there is nothing known against the idea that
& = 0, with [, probably equal to — 3. However, there is no strong
evidence in favor of the idea either. Theories with non-vanishing
& operators and various values of I, and [, are not excluded at
all (although even here a dilaton would be useful to explain why
(N|u|N> is so large). It is a challenge to theorists to propose
experimental means of checking whether the & operator is there
or nol.

It is also possible that the simple theory of chiral symmetry
violation may be wrong. First of all, the expression — ugy + qu,
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could be right for the SU,xSU,—conserving hut SU,;=xSU,-
violating part of (g, while the SU; = SU,; violation could be
accomplished by something quite different from ( — ¢ — Ji}u,.
Secondlv, there can easily be an admixture of the eighth component
gs of an octet belonging to (1, 8) and (8, 1). Thirdly, the whole idea
of explaining m? ~ 0 by near-conservation of SU,x SU, might
fail, as might the idea of octet violation of SU,; it is those two
hypotheses that give the result that for m2 = 0 we have only
u,— Jia. with a possible admixture of gg. Here again there is a
challenge to theoreticians to propose effective experimental tests
of the theory of chiral symmetry violation.

3. LIGHT CONE COMMUTATORS AND DEEP
INELASTIC ELECTRON SCATTERING

We want ultimately to connect the above discussion of physical
dimensions and broken scale invariance with the scaling described
in connection with the Stanford experiments on deep inelastic
electron scattering. '* We must begin by presenting the Stanford
scaling in suitable form. For the purpose of doing so, we shall
assume for convenience that the expzriments support certain
popular conclusions, even though uncertainties really prevent us
from saying more than that the expzriments are consistent with
such conclusions:

(1) that the scaling formula of Bjorken is really correct, with no
logarithmic factors, as the energy and virtual photon mass go to
infinity with fixed ratio;

(2) that in this limit the neutron and proton behave differently;

(3) that in the limit the longitudinal cross section [or virtual
photons goes to zero compared to the transverse cross section.

All these conclusions are easy to accept if we draw our intuition
from certain field theories without interactions or from certain
field theories with naive manipulation of operators. However,
detailed calculations using the renormalized perturbation expansion
in renormalizable field theorics do not reveal any of these forms of
behavior, unless of course the sum of all orders of perturbation
theory somehow restores the simple situation. If we accept the
conclusions, therefore, we should probably not think in terms
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of the renormalized perturbation expansion, but rather conclude,
s0 to speak, that Nature reads books on free field theory, as far as
the Bjorken limit is concerned.

To discuss the Stanford results, we employ a more or less
convenlional nolation. The structure functions of the nucleon are
defined by matrix elements averaged over nucleon spin,

1 A % e
TE_[a‘w\r,piD,.tx}.;.{y)]IN. pye iz
= (5.., - q-;gi)wdq’.p q)
+(p - %‘,—"4.) (p, - %j“iq-)wﬂﬂ".l" 2 o1

4udy (p-@?
(o S2) - 2

3P~ @) + PuPya” = (Puy + 4uPIP "4 ),
@ Y

+

where p is the nucleon four-momentum and g the four-momentum
of the virtual photon. As g* and g - p become infinite with fixed
ratio, averaging over the nucleon spin and assuming ¢, /o, % — 0,
we cun write the Bjorken scaling in the form

% J. d*x(N, lpl| Uu(x)’j-(}')]l N, phe —igle=y)

(Pudy + P3P 4 — 0ulP - 4)° — Pup1*
- Py T 0w? 2~ Caf 37 T Ikt potd), 3.2
q*q - p) ) 622
where £ = — ¢*/2p - ¢ and F,(£) is the scaling function in the

deep inelastic region.

In coordinate space, this limit is achieved by approaching the
light cone (x — y)* = 0,'* and we employ a method, used by
Frishman® and by Brandt and Preparata,® generalizing earlier
work of Wilson, that starts with an expansion for commutators or
operator products valid near (x — y)* = 0. (The symbol = will
be employed for equality in the vicinity of the light cone.) After
the expansion is made, then the matrix element is taken between
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nucleons. To simplify matters, let us introduce the “‘barred
product” of two operators, which means that we average over the
mean position R = (x + y)/2, leaving a function of z = x—y
only (as appropriate for matrix elements with no change of
momentum) and that we retain in the expansion only totally
symmetric Lorentz tensor operators (as appropriate for matrix
elements averaged over spin). Then the assumed light-cone
expansion of the barred commutator [j,(x), j,(»)] tells us that we
have, as z2 =+ 0,

[T 2 el 2K+ 2,29 Coreg + )
(3.3)

+ @0, = B IHENU + 377300 + ),

where

1, : x
ST |

28,,8,05 = 85005 = 8,,0,8, = 8,,0,0, = 8,,0,0, = 8,40,,0* = 3,,8,,8*
s i

and the second term, the one that gives o, will be ignored for
simplicity in our further work.

In order to obtain the Bjorken limit, we have only to examine
the matrix elements between le) and itsell of the operators
Oups Coprar Oagraty, tc. The leading tensors in the matrix elements
have the form c1p,p;, c4P.PsP,Ps €lc., where the ¢'s are dimension-
less constants. The lower tensors, such as §,,, have coefficients that
are positive powers of masses, and thesc tensors give negligible
contributions in the Bjorken limit. All we need is the very weak
assumption that ¢,, ¢4, cy, elc., are not all zero, and we obtain
the Bjorken limit.

We define the function

Fp-2) = et 3 cip 2 4 6.4
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Taking the Fourier transform of the matrix element of (3.3), we
get in the Bjorken limit

Wy i&lﬁ' jd'ze T F(p - 2)e(20)8(22)
1 -
i F(E)dE d‘ze'“""“ﬂfzu]‘s(zz)
2n?i J. I (3.5)
-2 J'F(c)dcs(—q © P)o(a* +2q - pé)

1
= =5 FO

where & is — q*/2q - p and F(§) is the Fourier transform of

Fip-2):
RO = 5, [ ¢ Fo-2)tp- ) 6

The function F(£) is therefore the Bjorken scaling function in the
deep inelastic limit and is defined only for — 1 < & < 1. We can
write (3.6) in the from

FO) = c2 50 — caqgp 8O + g™ @ =+ (B7)

The dimensionless numbers ¢; defined by the matrix clements of
the expansion operators can be written as

0= j FOdE, <o = —_|' FO@de -~ (38)
-1 -1

This shows the connection between the matrix elements of the
cxpansion operators and the moments of the scaling function.
The Bjorken limit is scen 1o be a special case (the matrix element
between single nucleon states of fixed momentum) of the light
cone expansion.'?

MNow the derivation of the Bjorken limit from the light conc
cxpansion can be described in terms of a kind of physical dimension
| for operators. (We shall see in the next section that these dimen-
sions [ are essentially the same as the physical dimensions
| we described in Section 2.) We define the expansion to
conserve dimension on the light cone and assign to each current
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| = — 3 while counting each power of z as having an [-value
equal to the power. We sce then that on the right-hand side we are
assigning to each J-th rank Loreniz tensor (with maximum spin J})
the dimension | = — J — 2. Furthermore, the physical dimension
cquals the mathematical dimension in all of these cases.

4. GENERALIZED LIGHT CONE SCALING
AND BROKEN SCALE INVARIANCE

We have outlined a situation in which scale invariance is broken
by a non-vanishing 0,, but restored in the most singular terms
of current commutators on the light cone. There is no reason to
suppose that such a restoration is restricted to commutators of
electromagnetic currents. We may extend the idea to all the
vector currents %, and axial vector currents #.°, to the scalar
and pseudoscalar operators u; and v, that comprise the (3, 3) and
(3, 3) representation thought to be involved in chiral symmetry
breaking, to the whole stress-energy momentum tensor ,,, to any
other local operator of physical significance, and finally to all
the local operators occurring in the light cone expansions of
commutators of all these yuantilies with one another. Let us
suppose that in lact conservation of dimension applies to leading
terms in the light cone in the commutators of all these quantities
and that finally a closed algebraic system with an infinite number
of local operators is attained, such that the light cone commutator
of any two of the operators is expressible as a linear combination
of operators in the algebra. We devote this section and the next
one to discussing such a situation.

If there is to be an analog of Bjorken scaling in all these si-
tuations, then on the right-hand side of the light cone commutation
relations we want operators with | = —J —2, as above for
electromagnetic current commutators, so that we get leading
matrix elements between one-particle states going like ep,py---,
where the ¢'s are dimensionless constants.

Of course, there might be cases in which, for some reason,
all the ¢'s have to vanish, and the next-to-leading term on the
light cone becomes the leading term. Then the coefficients would
have the dimensions ol positive powers of mass. We want to avoid,
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however, situations in which coefficients with the dimension of
negative powers of mass occur; that means on the right-hand side
we want [ < —J =2 in any case, and | = —J — 2 when there
is nothing to prevent it.

This idea might have to be modified, as in a quark model with
a scalar or pseudoscalar *‘gluon’ field, to allow for a single
operator ¢, with | = — 1 and J = 0, that can occur in a barred
product, but without a sequence of higher tensors with | = —J — 1
that could occur in such a product; gradients of ¢ would, of
course, average out in a barred product. However, even this
modification is probably unnecessary, since preliminary indications
are that, in the light cone commutator of any two (physically
interesting operators, the operator ¢ with [ = — 1 would not
appear on the right-hand side.

Mow, on the left-hand side, we want the non-conserved currents
among #,, and & .',’to act as if they have dimension — 3 just like
the conserved ones, as far as leading singularities on the light
cone are concerned, even though the non-conservation implies
the admixture of terms that may have other dimensions I, di-
mensions that become | — 1 in the divergences, and correspond
to dimensions I —1 in the SU,xSU, breaking terms in the
energy density. But the idea of conservation of dimension on the
light cone tells us that we are dealing with lower singularities when
the dimensions of the opecrators on the left are greater. What is
needed, then, is for the dimensions [ to be > — 3, i.c., for the
chiral symmetry breakine terms in 0,, to have dimension > — 4.
Likewise, il we want the stress-energy-momentum tensor itself
to obey simple light cone scaling, we need to have the dimension
of all scale breaking parts of ,, restricted to values > —4. In
general, we can have symmetry on the light cone if the symmetry
breaking terms in #,, have dimension greater than — 4. (See
Appendix I.)

Now we can have #, and .ﬁ',’_ behaving, as far as leading
singulasities on the light cone are concerned, like conserved
currents with [ = — 3, 6, behaving like a chiral and scale invariant
quantity with [ = — 4, and so forth. To pick out the subsidiary
dimensions associaled with the non-conservation of SU,;xSU,
and dilation, we can study light cone commutators involving,
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8,F . 0.F% , and . (If the (3, 3) + (3, 3) hypothesis is correct,
that means studying commutators involving u's and v’s and also &,
ifd # 0.)

In our enormous closed light cone algebra, we have all the
operators under consideration occuring on the left-hand side,
the ones with [ = — J — 2 on the right-hand side, and cocfficicnts
that are functions of z behaving like powers according to the
conservation of dimension. But arc there restrictions on these
powers? And are there restrictions on the dimensions occurring
among the operators?

If, for example, the functions of z have to be like powers of z?
(or &(z%), 6'(z®), etc.) multiplied by tensors z,zyz, -, and il
1+ J for some operators is allowed to be non-integral or even
odd integral, then we cannot always have | = —J —2 on the
right, i.c., the coefficients of all such operators would vanish in
certain commutators, and for those commutators we would have
to be content with operators with [ < —J — 2 on the right, and
cocflicients of leading tensors that act like positive powers of
a mass.

Let us consider the example:

[6,,0),u(3] = E(2) (00) + 2,0,(3) + =) + -+,

where u(y) has the dimension — 3. In this case we cannot have
the Bjorken scaling. Because of the rclation

[D(0), u(0)] = — 3iu(0),

the operator @(y) has to be proportional to u(y). The operator
series fulfilling the condition | = — J —2 is forbidden in this
case on the right-hand side.

We have already emphasized that Nature seems to imitate the
algebraic properties of free ficld thcory rather than renormalized
perturbation theory. (We could also say that Nature is imitating
a super-renormalizable theory, even though no sensible theory
of that kind exists, with the usual methods of renormalization,
in four dimensions.) This suggests that we should have in our
g | expansion fr. k finite equal-time commutators for
all possible operators and their time derivatives.
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Such a requirement means that all functions of z multiplying
operators in a light cone expansion must have the behavior
described just above, i.e., the scalar functions involved behave
like integral forces of z? or like derivatives of delta lunctions
with z? as the argument. The formula

1 1 -22+3
@riR @i 7,0 O R X
shows the sort of thing we mean. It also shows that « must not be
too large. That can result in lower limits on the tensorial rank of the
first operator in the light cone expansion in higher and higher
tensors; to put it differently, the first few operators in a particular
light cone expansion may have to be zero in order to give finiteness
of equal time commulators with all time derivatives.

Mow, on the right-hand side of a light cone commutator of two
physically interesting operators, when rules such as we have just
discussed do not forbid it, we obtain operators with definite
SU, % SU, and other symmetry properies, of various tensor ranks,
and with | = — J — 2. Now, for a given set of quantum numbers,
how many such operators are there? Wilson' suggested a long
time ago that there may be very few, somctimes only one, and
others none. Thus no matter what we have on the left, we always
would get the same old operators on the right (when not forbidden
and less singular terms with dimensional coefficients occuring
instead). This is very important, since the matrix elements of
these universal | = — J — 2 operators arc then natural constants
occurring in many problems. Wilson presumably went a little too
far in guessing that the only Lorentz tensor operator in the light
cone expansion of [j,(x), j,(»)] would be the stress-energy-
momentum tensor 0,,, with no provision for an accompanying
octet of | = —4 tensors. That radical suggestion, as shown by
Mack,'? would make [F§"(£) d& cqual to [F¥ (£)dé, which
does not appear to be the case. However, it is still possible that
one singlet and one octet of lensors may do the job. (Sce the
discussion in Section 7 of the ““pure quark’ case.)

If we allow z, to approach zero in a light cone commutator, we
obtain an equal time commutator. If Wilson's principlz (suitably
weakened) is admitted, then all physically interesting operators
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must obey some cqual time commutation relations, with well-
known operators on the right-hand side, and presumably there
are fairly small algebraic systems to which these equal time
C tators belong. The di ions of the operators constrain
severely the nature of the algebra involved. For example, sup-
pose SU; x SU,; is broken by a quantity u belonging to the
representation (3,3) @ (3,3) and having a single dimension 5
Then, if |, = —3, we may well have the algebraic system proposed
years ago by one of us (M.G.-M.) in which F,, F*, [ u,d’x, and
fuvd®x obey the E.T.C. relations of U,, as in the quark model. If
I, = =2, however, then we would have [u,d’xand d/dr [ud’x
commuting to give a set of quantities including [wd*x, and
so forth.

We have described scaling in this section as if the dimensions [
were closely related to the dimensions / obtained by equal time
commutation with the dilation operator D in Section 2. Let us
now demonstrate that this is so.

To take a simple case, suppose that in the light cone commutator
of an operator @ --- with itself, the same operator @ --- occurs in the
expansion on the right-hand side. Then we have a situation crudely
described by the equation

(0@ 0O 2 -+ @0 @+, (@)

where | is the principal dimension of @-.-. Here (z)' means any
function of z with dimension I, and we must have that because of
conservation of dimension. Now under equal time commutation
with D, say @--- exhibits dimension I Let zo -0 and perform
the equal timc commutation, according to Eqg. (2.3). We obtain

(iz -V =2ih[@-(2),0---(0)] = — ikz)'0---(0)
(4.2)
= (il = 2il}z)'®---(0)

so that | = J, as we would like.

Now to generalize the demonstration, we consider the infinite
closed algebra of light cone commutators, construct commutators
like (4.1) involving different operators, and from commutation
with D as in (4.2) obtain equations
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Lh+lh=L=L+1L-=1, (4.3)

where @+ and 0./ are commuted and yield a term con-
taining @--* on the right. Chains of such relations can
then be used to demonstrate finally that | = | for the various
operators in which we are interested.

The subsidiary dimensions associated with symmetry breaking
have not been treated here. They can be dealt with in part by
isolating the expressions 5,.9',: , 8,,, ctc., that exhibit only the
subsidiary dimensions and applying similar arguments to them.
In that way we learn that also for subsidiary dimensions [ = [.

However, the subsidiary dimensions, while numerically equal
for the two delinitions of dimension, do not enter in the same way
for the two definitions. The physical dimension [ defined by light
cone commutation always cnters covariantly, while [ is defined
by cqual time commutation with the quantity D and enters non-
covariantly, as in the break-up of 0, into the leading term Ez?,, of
dimension —4 and the subsidiary ones of higher dimensions.
If these others come from world scalars w, of dimensions [, then
we have

O = O+ Z{0+ Doy + (4 +D0,00,0} 3=, (44)

so that we agrec with the relations

000 = Ogo + Ew,, (2.8)
=0, = Z(l+4w,. 2.9)

Clearly, E-I_, is non-covariant.

To obtain the non-covariant formula from the covariant one,
the best method is to write the light cone commutator of an
operator with 8,,, involving physical dimensions I, and then
construct D = — [x,0,,d% out of 6,, and allow the light cone
commutator to approach an equal time commutator. The non-
covariant formula involving [ must then result.

As an example of non-covariant behavior of equal time com-
mutation with D, consider such a commutator involving an
arbitrary tensor operator @,, of dimension — 4. We may pick up
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non-covariant contributions that arise from lower order terms
near the light cone than those that give the dominant scaling
behavior. We may have

[0,(%), G, ()] =leading term +8,8,3,0, {e(zo)d(z* ) E() + -+ ]} + -
giving the result

ET.C. [D,0,,(0)] = 4i6,,(0) + const. §,08,,6(0) + - .

For commutation of D with a scalar operator, there is no analog
of this situation.

5. BILOCAL OPERATORS

So far, in commuting two currents at points separated by a
four-dimensional vector z,, we have expanded the right-hand side
on the light cone in powers of z,. It is very convenient for many
purposes to sum the series and obtain a single operator of low
Lorentz tensor rank that is a function of z. In a barred commutator,
it is a function of z only, but in an ordinary unbarred commutator,
it is a function of z and R=(x + y)/2, in other words, a function
of x and y. We call such an operator a bilocal operator and write
it as @---(x, y) or, in barred form, 5---(x,y).

We can, for example, write Eq. (3.3) in the form

D) /)] = ne{6(20)8(z2)0, (x, )} + longitudinal term, (5.1)

using the barred form of a bilocal operator @, (x,y) that sums
up all the tensors of higher and higher rank in Eq. (3.3).

Now in terms of bilocal operators we can formulate a much
stronger hypothesis than the modified Wilson hypothesis men-
tioned in the last section, There we supposed that on the right-hand
side of any light-cone commutators (unless the leading terms
were forbidden for some reason) we would always have operators
with | = — J — 2 and that for a given J and a given set of quantum
numbers there would be very few of these, perhaps only one, and
that the quantum numbers themselves would be greatly restricted
(for example, to SU, octets and singlets). Here we can state the
much stronger conjecture that for a given set of quantum numbers
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the bilocal operators appearing on the right are very few in number
(and perhaps therc is only one in each case), with the quantum
numbers greatly restricted. That m=ans that instead of an arbitrary
series @,, +const. 22,0, + const. '2;2,2. 290 5,03, + -+, WC
have a unique sum @, (x,y) with all the constants determined.
The same bilocal operator will appear in many commutators,
then, and its matrix elements (for example, between proton and
proton with no charge of momentum) will give universal deep
inclastic form factors.

Let us express in terms of bilocal operators the idea mentioned in
the last section that all tensor operators appearing on the right-
hand side of the light cone current commutators may themselves
be commuted according to conscrvation of dimension on the
light cone, but lead to the same set of operators, giving a closed
light cone algebra of an infinite number of local operators of all
tensor ranks. We can sum up all these operators to make bilocal
operators and commute those, obtaining, on the right-hand side
according to the principle mentioned above, the same bilocal
operators. Thus we obtain a light conc algebra generated by a
small finite number of bilocal operators. These are the bilocal
operators that give the most singular terms on the light cone in
any commutator of local operators, the terms that give scaling
behavior. (As we have said, in certain cases they may be forbidden
to occur and positive powers of masses would then appear instead
of dimensionless cocfficicnts.)

This idea of a universal light cone algebra of bilocal operators
with | = —J — 2 is a very elegant hypothesis, but one that goes
far beyond present experimental evidence. We can hope to check
it some day if we can find situations in which limiting cases of
experiments involve the light cone commutators of light cone
commutators. Attempts have been made to connect differcntial
cross sections for the Compton effect with such mathematical
quantities;® it will be interesting to see what comes of that and
other such efforts.

A very important technical question arises in connection with
the light cone algebra of bilocal operators. When we talk about
the commutators of the individual local operators of all tensor
ranks, we are dealing with just two points x and y and with the
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limit (x — y)* - 0. But when we treat the commutator of bilocal
operators @(x,u) and &y, v), what are the space-time rclationships
of x, u, y, and v in the case to which the commutation relations
apply? We must be careful, because if we give too liberal a pre-
scription for these relationships we may be assuming more than
could be true in any rcalistic picture of hadrons.

The bilocal operators arise originally in commutators of local
operators on the light cone, and therefore we are interested in
them when (x — u)*—+0 and (y —v)? -+0. In the light cone
algebra of bilocal operators, we arc interested in singularilies
that are picked up when (x — y)* or when (& — v)* =0 or when
(x — v)* =0 or when (u — y)* - 0. But do we have to have all
six quantities simultaneously brought near to zero? That is not
yet clear. In order to be safe, let us assume here that all six
quantities do go to zero.

6. LIGHT CONE ALGEBRA ABSTRACTED
FROM A QUARK PICTURE

Can we postulate a particular form for the light cone algebra of
bilocal operators?

We have indicated above that if the Stanford experiments, when
extended and refined, still suggest the absznce of logarithmic terms
the vanishing of thc longitudinal cross section, and a difference
between neutron and proton in the deep inelastic limit, then it
looks as if in this limit Mature is following free field theory, or
interacting field theory with naive manipulation of opecrators,
rather than what we know about the perturbation expansions of
renormalised field theory. We might, therefore, look at a simple
relativistic field theory model and abstract from it a light cone
algebra that we could postulate as being true of the real system
of hadrons. The simplest such model would be that of free quarks.

In the same way, the idea of an algebra of equal-time com-
mutators of charges or charge densities was abstracted ten years
ago from a relativistic Lagrangian model of a free spin 1/2 triplet,
what would nowadays be called the quark triplet. The essential
feature in this abstraction was the remark that turning on certain
kinds of strong interaction in such a modsl would not affect
the equal time commutation relations, even when all orders of
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perturbation theory were included; likewise, mass differences
breaking the symmetry under SU; would not disturb the equal
time commutation relations of SU,.

We are faced, then, with the following question. Are there non-
trivial ficld thcory models of quarks with interactions such that
the light cone algebra of free quarks remains undisturbed to all
orders of naive perturbation theory? Of course, the interactions
will make great changes in the operator commutators inside the
light conc; the question is whether the leading singularity on the
light cone is unaffected. Let us assume, for purposes of our dis-
cussion, that the answer is affirmative. Then we can feel somewhat
safe from absurdity in postulating for real hadrons the light cone
algebras of free quarks, and indeed of massless free quarks (since
the masses do not affect the light cone singularity).

Actually, it is easy to construct an example of an interacting
field theory in which our condition seems to be fulfilled, namely
a theory in which the quark ficld interacts with a neutral scalar or
pseudoscalar “'gluon’ field ¢. We note the fact that the only
operator series in such a theory that fulfills | = —J—2 and
contains ¢(x) is the following: ¢(x)@(x), ¢(x)d,d(x)---. But these
operators do not seem to appcar in light cone expansions of
products of local operators consisting only of quark fields, like
the currents. A diflerent situation prevails in a theory in which
the **gluon’ is a vector meson, since in that case we can have the
operator series J(x)y,B,(x)q(x), 4(x)y,B,B,q(x), ---, contributing to
the Bjorken limit. The detailed behavior of the various “‘gluon"
models is being studied by Llewellyn Smith.'®

In the following, we consider the light cone algebra suggested
by the quark model. We obtain for the commutator of two currents
on the light cone (connected part only):

[;',(X), f},l}')]
2 4 DN inlsurse Frxe ) + F i3

+ it (FE(0) = FLx ] + diplS,pu(Fralx, ¥)

— Fo(1, X)) = itpul F Sy, X) + F i (x, N])
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[F ). &)

= %ﬂ.,[&(Z.)fF(-‘f’)]{f!:,.[-‘.‘.,,,(u‘ir ve(x, 9) + F (3. 0))

+ i6upalFua(ys %) = Fpulx, 1]
+dip[Sup o Fis(%, 1) = Fi(1, )
= iy F a1, X) + Fpolx, ]}
[Fi), F (0] = [F ). F 0],
Suvps = Bupdra + BupByg = 8,08,0s z=x-y.

If we go to the equal time limit in (6.1) we pick up the current
algebra relations for the currents; in lact we obtain, for the space
integrals of all componets of nine vector and nine axial-vector
currents, the algebra'® of U, x U,.

Note that we can get similar relations for the current anti-
commutators or for the products of currents on the light cone,
just by replacing

(6.1)

1 % i1 i 1
3 lzaE] by —g5d oy or by gl
respectively. Perhaps we can abstract thesc relations also and use
them for badron theory.

In (6.1) we have introduced bilocal generalizations of the vector
and axial-vector currents, which in a quark model correspond to

products of quark fields:

F . 3) ~ A0) 5 Area)
= (6.2)
Flule, ) ~ () 5 5909

Note that the products in (6.2) have to be understood as “‘genera-
lized Wick products. The ¢ ber part in the product of two
quark fields is already excluded, since it does not contribute to the
connecied current commutator. The ber part is ed
by vacuum processes like e* e~ annihilation. Assuming that the
disconnected part of the commutator on the light cone is also
dictated by the quark model, we would obtain
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Groresn- ~ CONst.fs for e e” annihilation,

where s is as usually defined: s = — (p, + p;)*. In particular,
we would get

.., (¢" ¢ into hadrons) — (£0%)o,,(e" e into muons)

with 20% = (2/3)* + (1/3)* + (1/3)* = 2/3.
Now we go on to close the algebraic system of (6.1), where local
currents occur on the left-hand side and bilocal ones on the right.
Let us assume that the bilocal generalizations of the vector and
axial vector currents are the basic entitics of the scheme. Again
using the quark model as a guideline on the light cone, we obtain
the following closed algebraic system for these bilocal operators:

[Fulxu), F (n,0)]
= ;—nﬁ,{dxr 0a)8[(x = 021N fin = dip) Surpr Fra(p 1)

+ iCympa® o, 1))

+ -;1; Bp{elug — yo)[(u = ) N fin + dip)

g F1sl,0) = iy F L)
[#5(x 1), F 10 0)] (6.3)
2 L afeto — 00l ~ YN fip — i)
(Surpe® io(¥s ) + i€ypa1a(y, 1))
4 Oy~ YO = N + i)
" urpeFke(X, V) = iCurpeF ra(%,0)),

[‘Flsg(x’ “)- fﬁ(}". v ] é [’r-(.‘l, u), '?.;-(}'l ”)]

Similar relations might be abstracted for the anticommutators
and products of two bilocal currents near the light cone. The
relations (6.3) are assumed to be true if
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(x—u) =0, (u—yy? =0,
w—v)*=0, (x—-y)=0
(x—v)3 =0, (u—v) =0,

This condition is obviously fulfilled if the four points x, u, y, v are
distributed on a straight line on the light conc. The algebraic
rclations (6.3) can be used, for example, to determine the light
cone commutator of two light cone commutators and relate this
more complicated case to the simpler case of a light cone com-
mutator. It would be interesting to propose experiments in order
to test the relations (6.3).

7. LIGHT CONE ALGEBRA
AND DEEP INELASTIC SCATTERING

In the last section we have emphasized that perhaps the light
cone is a region of very high symmetry (scale and SU,x SU,
invariance). Furthermore, we have abstracted from the quark model
certain algebraic properties that might be right on the light cone.
MNow we should like to mention some general relations that we
can obtain using this light cone algebra. But let us first consider
the weak interactions in the deep inelastic region.

We introduce the weak currents J," (x), J, (x) and consider the
following expression:

1 s
W)= g [ 274 G|, 4@, -0 | >
. 2 i
s (a-v - q;_f') (wl * __,(f_qq‘)_ W:‘J _%anlpc‘hwj*

SulP - 9)* + pupya® = (Pudy + PGP " 4

+
FE

LAY A

+ (9P + 4P IWs ™ +ilqup, — 4, )W, " . (7.1)

In general, we have to describe the inelastic neutrino hadron
proeesses by six structure functions, From naive scaling arguments
we would expect in the deep inelastic limit:
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wl Tieh F|(§J‘ —q-= sz+ —+ Fy(E),
—q - pWy" = Fy(d), —q - pW,T = Fy(8), (7.2)
—qpWst = Fi(8), =g pW,* = Fg(d).

The formulae above have the most general form, valid for arbitrary
vectors J,(x). We neglect the T-violating effects, which may in
any case be 0 on the light cone: F, = 0. We have already stressed
that the weak currents are conserved on the light cone, and we
conclude:

Fy8) = F(©) =0. (7.3)

Equation (7.3) is an experimental consequence of the SU, x SU,
symmetry on the light cone, which may be tested by experiment.
In the decp inclastic limit we have only threc non-vanishing
structure functions, corresponding to a conserved current.

It is interesting to note that there is the possibility of testing
the dimension | of the divergence of the axial vector current, if
our scaling hypothesis is right. We write, for the weak axial
vector current,

3 F Ly = ¢ vy(x) (7.4

where v (x) is a local operator of dimension [, and ¢ is a parameter
with non-zero dimension.

According to our assumptions about symmetry breaking, ¢ can
be written as a positive power ol a mass. Using (7.1), we obtain

LW, @ = 42 a2 G| [ou(2) 0-@] | 2>

(7.5)
= (g?V’W,* — 2q%q - pW,*.

We define:

D@q P = 4 jd‘ze-"'%pr[u*(z).u-(onlp>. .6

If we assume that D scales in the deep i
the dimension [ of v (x), we obtain

lim (~p- @7"7°Dig% q - p) = $(E) a1

ic region according to
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where ¢(£) denotes the deep inealstic structure function for the
matrix element (7.6).
Using (7.5) we obtain

lim(—p- @' (@ W —2%W, %) = 9. (1.8)
LY

If we determine cxperimentally the scaling properties of W, and
Wy, then we can deduce from (7.8) the dimension [ of v ,(x).
This I is the same quantity as the dimension /, discussed in Sec-
tion 2, provided the SU; x SU, violating term in the energy has a
definite dimension?®

In order to apply the light cone algebra of Section 6, we have to
relate the expectation values of the bilocal operators appearing
there to the structure function in question. This is done in Appen-
dix II, where we give this connection for arbitrary currents,
We use Eqgs. (A.12) and (A.13), where the functions S%(&), A%(&)
are given by the expectation value of the symmetric and anti-
symmetric bilocal currents (Eq. (A.8)), and obtain:

(a) for deep inelastic electron-hadron scattering:
O = 200+ o steey a9
33

(b) for deep inelastic neutrino-hadron scattering:

Q) = (080 12,200+ 2480 010
J3

B = 200 -2 190 - L', aan
J3

In (7.5) and (7.6) we have ncglected the Cabibbo angle, since
sin?8, = 0.05 0.

Bothin (7.4) and (7.6), A*(£) occurs as the only isospin dependent
part, and we can simply derivc relations between the structure
functions of different members of an isospin multiplet, e.g., for
neutron and proton:

6:(FF' ~F)=¢-(Fi" —F7). (7.12)
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This relation was first obtained by C. H. Llewellyn Smith” within
the “parton” model. One can derive similar relations for other
isospin multiplets.

In the symmetric bilocal current appear certain operators that
we know. The operator j,(x) = ig(x}y,q(x) has to be identical
with the hadron current (we suppress internal indices) in order
to give current algebra. But we know their expectation values,
which are given by the corresponding quantum ber. In such
a way we can derive a large set of sum rules relating certain
moments of the structure functions to their well-known expec-
tation values.

We give only the following two examples, which follow im-
mediately from (7.9), (7.10), (7.11):

L 1

[ “rr@-rr = [ Ty ©-£2 (-0
. =1¢

= 4s}(p) = 4. 7

Here s3(p) means, as in Appendix 1, the proton cxpectation value
of 2F ;. This is the Adler sum rule,** usually written as

L rEr@-FE-2 (7.14)
From (7.11) we obtain:

J' (F3* + Fy)dE = = 20253 (p) + 57 (p)) = — 12 (7.15)
1
or

1
J (F3" +Fy' ) = -6, (7.16)
]

which is the sum rule first derived by Gross and Llewellyn Smith.??

If we make the special assumption that we arc abstracting our
light cone relations from a pure quark model with no *‘gluon field"
and non-derivative couplings, we can get a further set of rclations.
Of course, no such model is known to exist in four dimensions
that is even renormalizable, much less super-renormalisable as
we would prefer to fit in with the ideas presented here. Neverthe-
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less, it may be worthwhile to examine sum rules that test whether
Nature imitates the *‘pure quark’ case.

The point is that when we expand the bilocal quantity % ,,(x, y)
to first order in y — x, we pick up a Lorentz tensor operator,
a singlet under SU,, that corresponds in the quark picture to the
operator  1/2{g(x)y,d,q(x) — ,3(x)y,q(x)}, which, if we sym-
metrize in u and v and ignore the trace, is the same as the stress-
energy-momentum tensor 8, in the pure gquark picture. But the
expected value of 0,, in any state of momentum p is just 2p,p,
and so we obtain sum rules for the pure quark case,

We consider the isospin averaged expressions:

e @+rr @ = 2f] 2w+ ] —I-J_A'(f)]
3

2 2
(P30 + FY @) = 22 S+ ~40)
N
and obtain
6(F;"+ F{") — (FY + FY) = 4Jg4°(f)
JE 0 1 5y
=4 3{0.5(6) _E'!'ﬂga ((3)RD]
In pure quark theories we have af = ,/2/3 and we obtain
1 1
o [ @ vy - [ @+ rrende =9
- -1
or, for the physical region 0 < £ < 1:
i 1
Gf (F¥ + F3" )¢ ~f (F3* + F}")d¢ = 4/3. (1.17)
o 0
The sum role (7.17) can be tested by experiment. This will test
whether one can describe the real world of hadrons by a theory

resembling one with only quarks, interacting in some unknown
non-linear fashion.

The scaling behavior in the deep inelastic region may be de-
scribed by the *‘parton modcl”? * In the deep inelastic region,
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the electron is viewed as scattering in the impulse approximation
off point-like constituents of the hadrons (“‘partons'). In this
case the scaling function F3 (&) can be written as

FF@= E P(N) (‘[‘: Qe fu8) (7.18)

where we sum up over all “‘partons™ (Z,) and all the possibilities
of having N partons (Z,). The momentum distribution function
of the “‘partons’ is denoted by f{¢), the charge of the i-th
“parton”” by Q,, We compare (7.9) with (7.18):

2
FIO = & 2400 + 4A"@) + 34@)

7.19
- S P(N) ( > e.-m:f,.(c}.) 1
N i

As long as we do not specifly the functions fy(&) and P(N), the
“‘parton model’’ gives us no more information than the generaliza-
tion of current algebra to the light cone as described in the last
scctions. If onc assumes special properties of these functions,
one goes beyond the light cone algebra of the currents, that means
beyond the properties of the operator products on the light cone.
Such additional assumptions, e.g., statistical assumptions about
the distributions of the *‘partons’ in relativistic phase space,
appear in the light cone algebra approach as specific assumptions
aboul the matrix elements of the expansion operators on the light
cone. These additional assumptions are seen, in our approach,
to be model dependent and somewhat arbitrary, as compared
to results of the light conc algebra. Our results can, of course, be
obtained by “‘parton’ methods and arc mostly well-known in
that connnection.

It is interesting to consider the different sum roles within the
“parton model”. The sum rules (7.14) and (7.16) are valid in
any ‘‘quark-parton’’ model; so is the symmetry relation (7.12).
The sum rule (7.17) is a specific property of a model consisting
only of quarks. If there is a **gluon"" present, we obtain a deviation
from 4/3 on the right-hand side, which measues the *‘gluon’’ con-
tribution to the energy-momentum tensor.

Qur closed algebra of bilocal operators on the light cone has, of
course, a parallel in the “*parton’” model. However, it is again much
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easier using our approach to disentangle what may be exactly
true (formulae for light cone commutators of light cone com-
mutators) from what depends on specific matrix elements and is
therefore model dependent. It would be profitable to apply such
an analysis to the work of Bjorken and Paschos, in the context
of “‘partons”’, on scaling in the Compton effect on protons.

As an cxample of a “‘parton model" relation that mingles
specific assumptions about matrix elements with more general
ideas of light cone algebra and abstraction from a pure quark
model, we may take the allegation that in the pure quark case
we have [F;"(£)d¢ = 2/9. Light cone algebra and the pure
quark assumption do not imply this.

8. CONCLUDING REMARKS

There are many observations that we would like to make and
many unanswered questions that we would like to raise about
light cone algebra. But we shall content ourselves with just a few
remarks.

First comes the question of whether we can distinguish in a well-
defined mathematical way, using physical quantities, between a
theory that makes use of SU, triplet representations locally and
one that does not. If we can, we must then ask whether a theory
that has triplets locally necessarily implies the existence of real
triplets (say real quarks) asymptotically. Dashen (private com-
munication) raises thesc two questions by constructing local
charge operators [, ,d*x over a finite volume. (This construc-
tion is somewhat illegitimate, since test functions in field theory
have to be multiplied by d functions in equal time charge density
commutators and should therefore have all derivatives, not like
the function that Dashen uses, which is unity inside ¥ and zero
outside.) If his quantitics F make sense, they obey the com-
mutation rules of SU, and we can ask whether for any V our
states contain triplet (or other triality # 0) representations of
this SU,. Dashen then suggests that our bilocal algebra probably
implies that local triplets in this sense are present; if the procedure
and the conclusion are correct, we must ask whether real quarks
are then implied.
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The question of quark statistics is another interesting one.
If quarks are real, then we cannot assign them para- Fermi statistics
of rank 3, since that is said to violate the factoring of the S-matrix
for distant subsystems. However, il somehow our quarks are
permanently bound in oscillators (and our theory is thus perhaps
equivalent to a bootstrap theory with no real quarks), then they
could be paralermions of rank 3. They can be bosons, too, if they
are not real, but only if there is a spinless fermion (the “'soul" of
a baryon) that accompanies the three quarks in cach baryon,

Another topic is the algebra of Uy x Ug x 0, that is implied at
equal times for the integrals of the current component and the
angular momentum.!? Is that algebra really correct or is it too
strong an assumption? Should it be replaced at P, = oo by only
the **‘good-good’’ part of the algebra?

Il we do have the full algebra, then the quark kinetic part of the
energy density is uniquely defined as the part behaving like (35, 1)
and (1, 35) with L = 1, i.c,, likea - V.

If we abstract relations from a pure quark picture without
gradient couplings, then this quark kinetic part of @,, is all there
is apart from the trace contribution. In that case, we have the
equal time commulation relation for the whole energy operalor:

3 s
L I [|Fud [Jﬁ;,d"x.Po]] = 16/3 P, + scale

Fml =l violating terms.

This relation, in the pure quark case, can be looked at in
another way. It is an equal time consequence of the relation

. 3n?
6,, = lim e

y=a

3,0,{(z*)* F (x)F ()} + scale violating terms

that holds when the singlet tensor term in the light cone expansion
of & (x)#F ;,(y) is just proportional to ,,, as in the pure quark
case. This relation is what, in the pure quark version of the light
cone algebra (extended to light cone products), replaces the
Sugawara?® model, in which 6,, is proportional to #,,%,,, with
dimension — 6. Qur expression is much more civilized, having
| = — 4 as it should. A more general equal time commutator than
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the one above, also implicd by the pure guark casc, is the follo-
wing:

3
L [F.Ax), 0pF (¥)] = 16if30,p8{x — y) + scale breaking terms,

Another important point that should be emphasized is that the
Ug % U, algebra requires the inclusion of a ninth vector current
F 4, and a ninth axial vector current %, and that the Latin index
for SU, representation components in Appendix I1 has Lo run
from 0 to 8. Now if the term in the cnergy densily that breaks
SU, »x SU, follows our usual conjecture and behaves like
— uy— cug with ¢ near — V"i and if the chiral symmetry preserving
but scale breaking term & is just a constant, then as u — 0 scale
invariance and chiral invariance become good, but the mass
formula for the pscudoscalar mesons indicates that we do not
want d,% 5, to be zero in that limit.'® Yet &, is supposcd to be
conserved on the light cone. Does this raise a problem for the
idea of & = const. or does it really raisc the whole question of
the relation of the light cone limit and the formal limit u— 0,
&—07

If there are dilations, with m? — 0 in the limit of scale invariance
while other masses stay finite, how does that jibe with the light
cone limit in which all masses act as if they go to zero? Presumably
there is no contradiction here, but the situation should be explored
further.

Finally, let us recall that in the specific application of scaling to
deep inelastic scaltering, the functions F(£) connect up with two
important parts of particle physics. As £ — 0, if we can interchange
this limit with the Bjorken limit, we are dealing with fixed ¢* and
with p - g = co and the behavior of the F's comes directly from the
Regge behavior of the corresponding exchanged channel. If
ap(0) = 1, then F3® (&) + F7" (£) goes like a constant at & = 0,
ie., &' 7O while F57(8) — FR(Z) goes like '™, ¢cte.

As & — 1, as emphasized by Drell and Yan®, there seems to be a
connection between the dependence of F(&) on 1 —¢ and the
dependence of the elastic form factors of the nucleons on 1 at
large 1.
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A problem of the quark model was connected with the Pauli principle for the wave
functions of the baryons, e.g. for the Q-baryon. To solve this problem, William Bardeen,
Fritzsch and Gell-Mann introduced in 1972 a new threefold quantum number for the
quarks, which they described as the “colors” of the quarks.

There are red quarks, green quarks and blue quarks. The transformations of the colors
are described by a color group SU(3). The three colors are denoted by “r”, “g” and “b”. The
hadrons are assumed to be color singlets—thus a baryon wave function is a superposition

of six terms:
baryon = (rgb — rbg + gbr — grb + brg — bgr).
The Q-baryon can now be described as a function of the three colored strange quarks:

Q ~ Y eysiskst,
i,k,l~rg,b.

Due to the color quantum number the wave function is now antisymmetric, if two
strange quarks are interchanged, and there is no problem with the Pauli principle.
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All baryons are bound states of three quarks with different colors—here as an example
the proton:

The meson wave function is the sum of three terms, involving the red, green and blue
quarks:

meson = (fr +gg+ l;b).

Another problem of the quark model is the decay rate of the neutral pion, which is an
order of magnitude smaller as predicted. If the color quantum number is taken into account,
the decay amplitude is increased by a factor 3, since in the triangle diagram the three colors
of the quarks appear. Thus the decay rate is a factor 9 larger and agrees now with the
experiment.

If an electron and a positron annihilate at high energies, a quark and an anti-quark are
produced. We consider the ratio R, which is the ratio of the cross section to produce a quark
pair and the cross section to produce a muon pair. This ratio is given by the sum of the
squares of the charges of the quarks:

R =(2/3) +(=1/3) +(=1/3) =2/3.
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This ratio describes the production of hadrons, which are produced by the quark pair.
According to the experiments the ratio R is about 2 in the energy region of about 2 GeV.
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If the color quantum number is taken into account, the ratio R increases by a factor 3 and
agrees with the experimental result. Thus there are three indications that the idea of the
color quantum number is correct—the wave functions of the baryons, the decay of the
neutral pion and the ratio R.

In 1972 Fritzsch and Gell-Mann started to investigate a gauge theory, using the colors of
the quarks. The gauge group is the group SU(3) of the color transformations. This theory,
which they called “Quantum Chromodynamics”, is very similar to Quantum Electrody-
namics, which describes the interaction of electrons with the electromagnetic field. It
combines electrodynamics, quantum mechanics and the theory of relativity.

Quantum Electrodynamics has an interesting property. If the field of the electron is
multiplied with a phase parameter, which depends on space and time, nothing changes.
This is called “local gauge invariance”. It requires that the electrons are interacting with a
vector field, the field of the photon. Without this interaction the theory would not be
invariant under local gauge transformations.

Furthermore the particle of the gauge field cannot have a mass—photons must be mass-
less. A mass term would destroy local gauge invariance. The gauge transformations form a
group, which in case of Quantum Electrodynamics is the unitary group U(1), the group of
complex numbers with absolute value 1.

The strength of the interaction is described by the electromagnetic coupling constant e or
by the fine-structure constant a:
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The fine-structure constant cannot be calculated. The experiments give:

o
=17
e 2 03028.

In quantum electrodynamics the coupling parameter is not constant, but depends on the
energy. Thus the fine-structure constant is not a constant, but a function of the energy. The
value, given above, describes the fine-structure constant at zero energy. At increasing
energy it increases slowly. At the mass of the Z-boson, about 91 GeV, it is about 6% larger:

In the theory of Quantum Chromodynamics the gauge group is the color group SU(3).
The gauge bosons are the “gluons”. The adjoint representation of the gauge group
determines the number of gauge bosons. Here the adjoint representation is an octet, thus
there are eight massless gluons.

In QCD the strength of the interaction is described by the coupling parameter g or the
analogue of the fine-structure constant:

a5
Y 4n’

In QED the gauge boson, the photon, interacts with the electron, but not with itself. In
QCD this is not the case. The gluons interact with the quarks, but also with other gluons.
This self-interaction of the gluons leads to an interesting property of QCD—asymptotic
freedom. The gauge coupling parameter of QCD decreases, if the energy is increased. At
very high energies the coupling parameter is small. It can be written as a function of an
energy scale A:

ay(Q*) = 2z/bln (Q*/A?),

2

Here n is the number of relevant quarks at the corresponding energy. In the energy
region between 10 GeV and 300 GeV five quarks contribute, thus the parameter b is
about 7.7.

Due to the asymptotic freedom the commutator of a current near light-like distances is
very similar to the commutator in the free quark model. This implies that the quarks can be
observed in deep inelastic scattering as nearly point-like constituents. At low energies the
coupling constant might increase without limit, thus the quarks and gluons are confined. A
rigorous proof of the confinement property is still missing.
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In QCD the scaling property of the cross sections, observed in deep inelastic scattering,
is not an exact property, but it is violated by small logarithmic terms. These scaling
violations were observed and are in good agreement with the theoretical predictions.

The scaling violations are functions of the scale parameter A. The experiments are in
agreement with the theoretical predictions, if this parameter is in the range

A =21373% Mev.

Many experiments were carried out to measure the QCD coupling parameter:
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With the LEP accelerator at CERN one has determined the QCD coupling parameter at
the mass of the Z-boson:

a,(Mz) = 0.1184 £ 0.0007.

In the absence of the quark masses the theory of QCD depends only on this scale
parameter, which determines the properties of the hadrons, e.g. their masses or their
magnetic moments. The proton mass can be expressed as a numerical constant, which
can be calculated, multiplied by the scale parameter:

M, = const. - A.

Of course, in reality the proton mass also depends on the quark masses. About 20 MeV
of the proton mass are due to the two u-quarks, about 19 MeV due to the d-quark, and about
35 MeV are due to the pairs of strange quarks and anti-quarks. If the quark masses are set to
zero, the mass of the proton will be reduced to about 860 MeV.

Since the QCD coupling parameter increases, if the energy decreases, the force among
the quarks becomes strong at large distances. Perturbation theory is useless in this region.
But if the space-time is described by a lattice, one can get information about the force
between the quarks at large distances using computers.
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We consider the case of one heavy quark. In QCD the forces between this quark and its
anti-quark does not decrease at large distances, but remains constant. Due to the self-
interaction of the gluons the gluon field lines attract each other. The quark and its anti-quark
are connected by a string of parallel gluon field lines and the force is constant.

In reality there are quarks with very small masses. If the heavy quarks are moved away
from each other, the gluons produce pairs of virtual light quarks and anti-quarks, which
produce mostly pions. Thus no string of gluon field lines is generated. The heavy quark
produces together with a light anti-quark a heavy meson, e.g. a B-meson.

In electron-positron annihilation at high energy the virtual photon produces a quark and
an anti-quark, which move away from each other with essentially the speed of light. These
quarks produce many mesons, which move away in the same direction as the original
quark. Thus a jet of mesons is produced—a quark jet. These jets were predicted in the year
1974 by Richard Feynman.

The quark jets were observed at DESY in 1978. One year later one observed at DESY
events with three jets. In the annihilation of an electron and a positron a quark, an anti-
quark and a gluon were produced. The gluon produced also a particle jet, thus three jets
were observed.

Fritzsch and Gell-Mann discussed in 1972 in their paper for the proceedings of the
Rochester conference in Chicago neutral particles, composed of gluons. Since the gluons
are color octets, two gluons could form a color singlet hadron, a glue-meson. One has
searched for these mesons, but nothing was observed thus far. Presumably these mesons are
difficult to observe—they have a high mass, mix with mesons, composed of a quark and an
anti-quark, and are very unstable.

Besides the glue mesons there should exist also new baryons, composed of four quarks
and an anti-quark, the penta-quark baryons. Thus far these particles have not been clearly
observed. The LHCb collaboration at CERN reported the observation of a penta-quark
baryon, composed of two u-quarks, one d-quark, one charmed quark and one charmed anti-
quark. The mass of this particle is about 4.4 GeV.

There should exist also new mesons, composed of two quarks and two anti-quarks, the
tetra-quark mesons. They should have masses of about 4 GeV. Thus far no clear evidence
for the existence of these mesons has been found.

Shortly after the Big Bang the universe was filled with a hot, dense soup of particles.
This mixture was dominated by quarks and by gluons. In those first moments of extreme
temperature, however, quarks and gluons were bound only weakly, free to move on their
own in a quark-gluon plasma.

To recreate conditions similar to those of the very early universe, accelerators produce
head-on collisions between massive ions, such as gold or lead nuclei. In these heavy-ion
collisions the hundreds of protons and neutrons in the two nuclei collide. This creates a
quark-gluon plasma, which is in particular studied with the ALICE experiment at the Large
Hadron Collider in CERN.

In heavy-ion collisions the quark-gluon plasma exists only for a very short time. But in
the center of large neutron stars should be a quark-gluon plasma, which exists for a very
long time.
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1. INTRODUCTION

The indication from deep inelastic electron scattering experiments at
SLAC that Bjorken scaling may really hold has motivated an extension of
the hypotheses of current algebra to what may be called light-cone current
algebra.! As before, one starts from a field theoretical quark model (say
one with neutral vector “gluons™) and abstracts exact algebraic results,
postulating their validity for the real world of hadrons. In light-cone
algebra, we abstract the most singular term near the light cone in the
commutator of two-vector or axial vector currents, which turns out to be
given in terms of bilocal current operators that reduce to local currents
when the two space-time points coincide. The algebraic properties of these
bilocal operators, as abstracted from the model, give a number of predic-
tions for the Bjorken functions in deep inelastic electron and neutrino
experiments. None is in disagreement with experiment. These algebraic
properties, by the way, are the same as in the free quark model.
139

Reprinted from Scale and Conformal Symmetry in Hadron Physics, ed. R. Gatto
(© John Wiley & Sons, Inc., 1973), pp. 139-151.
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From the mathematical point of view, the new abstractions differ
from the older ones of current algebra (commutators of “good com-
ponents” of current densities at equal times or on a light plane) in being
true only formally in a model with interactions, while failing to each order
of renormalized perturbation theory, like the scaling itself. Obviously it is
hoped that, if the scaling works in the real world, so do the relations of
light-cone current algebra, in spite of the lack of cooperation from renor-
malized perturbation theory in the model.

The applications to deep inelastic scattering involve assumptions only
about the connected part of each current commutator, We may ask
whether the disconnected part—for example, the vacuum expected value of
the commutator of currents—also behaves in the light-cone limit as it does
formally in the quark-gluon model, namely, the same as for a free quark
model. Does the commutator of two currents, sandwiched between the
hadron vacuum state and itself, act at high momenta exactly as it would
for free quark theory? If so, then we can predict immediately and trivially
the high-energy limit of the ratio

o(e* +e” —hadrons)/o(e* +e -u" +p7)

for one-photon annihilation.

In contrast to the situation for the connected part and deep inelastic
scattering, the annihilation results depend on the statistics of the quarks in
the model. For three Fermi-Dirac quarks, the ratio would be (3)*+
(—H?+(—$?=1, but do we want Fermi-Dirac quarks? The relativistic
“current quarks” in the model, which are essentially square roots of
currents, are of course not identical with “constituent quarks” of the naive,
approximate quark picture of baryon and meson spectra. Nevertheless,
there should be a transformation, perhaps even a unitary transformation,
linking constituent quarks and current quarks (in a more abstract
language, a transformation connecting the symmetry group [SU(3)x
SUQ)]w, w0, s1rong ©f the constituent quark picture of baryons and mesons, a
subgroup of [SU(6)] w.w‘ﬂms,z with the symmetry group [SU(3)X
SU(3)] 1y oo, cumensss- generated by the vector and axial vector charges). This
transformation should certainly preserve quark statistics. Therefore the
indications from the constituent quark picture that quarks obey peculiar
statistics should suggest the same behavior for the current quarks in the
underlying relativistic model from which we abstract the vacuum behavior
of the light-cone current commutator.*

In the constituent quark picture of baryons,® the ground-state wave
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function is described by (56,1),L=0% with respect to [SU(6) X SU(6) X
SU(3)] or (56,L,=0) with respect to [SU(6) X O(2)],,. It is totally sym-
metric in spin and SU(3). In accordance with the simplicity of the picture,
one might expect the space wave function of the ground state to be totally
symmetric. The entire wave function is then symmetrical. Yet baryons are
to be antisymmetrized with respect to one another, since they do obey the
Pauli principle. Thus the peculiar statistics suggested for quarks has then
symmetrized in sets of three and otherwise antisymmetrized. This can be
described in various equivalent ways. One is to consider “para-Fermi
statistics of rank 3”° and then to impose the restriction that all physical
particles be fermions or bosons; the quarks are then fictitious (i.e., always
bound) and all physical three-quark systems are totally symmetric overall.
An equivalent description, easier to follow, involves introducing nine types
of quarks, that is, the usual three types in each of three “colors,” say red,
white, and blue. The restriction is then imposed that all physical states and
all observable quantities like the currents be singlets with respect to the
SU(3) of color (i.e., the symmetry that manipulates the color index). Again,
the quarks are fictitious. Let us refer to this type of statistics as “quark
statistics.”

If we take the quark statistics seriously and apply it to current quarks
as well as constituent quarks, then the closed-loop processes in the models
are multiplied by a factor of 3, and the asymptotic ratio o(e*e” —hadrons)
/o(e*e”—p*p”) becomes 3-4=2.

Experiments at present are too low in energy and not accurate enough
to test this prediction, but in the next year or two the situation should
change. Meanwhile, is there any supporting evidence? Assuming that the
connected light-cone algebra is right, we should like to know whether we
can abstract the disconnected part as well, and whether the statistics are
right. In fact, there is evidence from the decay of the #” into 2y. It is well
known that in the partially conserved axial current (PCAC) limit, with
m_*—0, Adler and others’ have given an exact formula for the decay
amplitude 7°>2y in a “quark-gluon” model theory. The amplitude is a
known constant times (3Q,,,°—3Q_,,,°), where the sum is over the
types of quarks and the charges Q,,, are those of I, =1 quarks, while the
charges Q_,,, are those of I,= —} quarks. The amplitude agrees with
experiment, within the errors, in both sign and magnitude if 3Q,,,%—
S0Q_*=1% If we had three Fermi-Dirac quarks, we would have
(3)*—(—1)*=14, and the decay rate would be wrong by a factor of §. With
“quark statistics,” we get {-3=1 and everything is all right, assuming that
PCAC is applicable.

There is, however, the problem of the derivation of the Adler formula.
In the original derivation a renormalized perturbation expansion is applied
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to the “quark-gluon” model theory, and it is shown that only the lowest-
order closed-loop diagram survives in the PCAC limit,” so that an exact
expression can be given for the decay amplitude. Clearly this derivation
does not directly suit our purposes, since our light-cone algebra is not
obtainable by renormalized perturbation theory term by term. Of course,
the situation might change if all orders are summed.

Recently it has become clear that the formula can be derived without
direct reference to renormalized perturbation theory, from considerations
of light-cone current algebra. Crewther has contributed greatly to clarify-
ing this point,'® using earlier work of Wilson'' and Schreier.'? Our objec-
tives in this chapter are to call attention to Crewther’s work, to sketch a
derivation that is somewhat simpler than his, and to clarify the question of
statistics,

We assume the connected light-cone algebra, and we make the further
abstraction, from free quark theory or formal “quark-gluon™ theory, of the
principle that not only commutators but also products and physically
ordered products of current operators obey scale invariance near the light
cone, so that, apart from possible subtraction terms involving four-
dimensional § functions, current products near the light cone are given by
the same formula as current commutators, with the singular functions
changed from e(z)8[(z%)] to (z*—iezy)™' for ordinary products or
(z2 —ie)~! for ordered products.

Then it can be shown from consistency arguments that the only
possible form for the disconnected parts (two-, three-, and four-point
functions) is that given by free quark theory or formal “quark-gluon”
theory, with only the coefficient needing to be determined by abstraction
from a model. (In general, of course, the coefficient could be zero, thus
changing the physics completely.) Then, from the light-cone behavior of
current products, including connected and disconnected parts, the Adler
formula for #°-2y in the PCAC limit can be derived in terms of that
coefficient.

If we take the coefficient from the model with “quark statistics,”
predicting the asymptotic ratio of o(e*e” —hadrons)/e(e*e” —p"p") to be
2 for one-photon annihilation, we obtain the correct value of the =2y
decay amplitude, agreeing with experiment in magnitude and sign. Con-
versely, if for any reason we do not like to appeal to the model, we can
take the coefficient from the observed #°—2y amplitude and predict in
that way that the asymptotic value of o(e*e” —hadrons)/a(e*e”—p*p"™)
should be about 2.

Some more complicated and less attractive models that agree with the
observed 7°—2y amplitude are discussed in Section 3.
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2. LIGHT-CONE ALGEBRA

The ideas of current algebra stem essentially from the attempt to abstract,
from field theoretic quark models with interactions, certain algebraic
relations obeyed by weak and electromagnetic currents to all orders in the
strong interaction, and to postulate these relations for the system of real
hadrons, while suggesting possible experimental tests of their validity. In
four dimensions, with spinor fields involved, the only renormalizable
models are ones that are barely renormalizable, such as a model of spinors
coupled to a neutral vector “gluon” field. Until recently, the relations
abstracted, such as the equal-time commutation relations of vector and
axial charges or charge densities, were true in each order of renormalized
perturbation theory in such a model. Now, however, one is considering the
abstraction of results that are true only formally, with canonical manipula-
tion of operators, and that fail, by powers of logarithmic factors, in each
order of renormalized perturbation theory, in all barely renormalizable
models (although they might be all right in a super-renormalizable model,
if there were one).

The reason for the recent trend is, of course, the tendency of the deep
inelastic electron scattering experiments at SLAC to encourage belief in
Bjorken scaling, which fails to every order of renormalized perturbation
theory in barely renormalizable models. There is also the availability of
beautiful algebraic results, with Bjorken scaling as one of their predictions,
if formal abstractions are accepted. The simplest such abstraction is that of
the formula giving the leading singularity on the light cone of the con-
nected part of the commutator of the vector or axial vector currents,' for
example:

[F.(x).6,( 2] = [R5(x)5:° ()]

= #BP{C(XG_)"))S[(X_)’)Z]]
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On the right-hand side we have the connected parts of bilocal operators
F.(x.y) and F,.’(x,»), which reduce to the local currents F,(x) and F,ysl(x) as
x—sy. The bilocal operators are defined as observable quantities only in the
vicinity of the light-cone, (x—y)*=0. Here

S'ww - Swﬁm + 8,98 e 'spaapa'
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Formula | gives Bjorken scaling by virtué of the finite matrix elements
assumed for F,(x,y) and Fws(x,y}; in fact, the Fourier transform of the
matrix element of F (x,p) is just the Bjorken scaling function. The fact that
all charged fields in the model have spin 4 determines the algebraic
structure of the formula and gives the prediction (o, /07);—0 for deep
inelastic electron scattering, not in contradiction with experiment. The
electrical and weak charges of the quarks in the model determine the
coefficients in the formula, and give rise to numerous sum rules and
inequalities for the SLAC-MIT experiments in the Bjorken limit, again
none in contradiction with experiment.

The formula for the leading light-cone singularity in the commutator
contains, of course, the physical information that near the light cone we
have full symmetry with respect to SU(3) X SU(3) and with respect to scale
transformations in coordinate space. Thus there is conservation of dimen-
sion in the formula, with each current having /= —3 and the singular
function x —y also having /= —3.

A simple generalization of the abstraction that we have considered
turns into a closed system, called the basic light-cone algebra. Here we
commute the bilocal operators as well, for instance, F(x,u) with 5,(y,v),
as all of the six intervals among the four space-time points approach 0, so
that all four points tend to lie on a lightlike straight line in Minkowski
space. Abstraction from the model gives us, on the right-hand side, a
singular function of one coordinate difference, say x—v, times a bilocal
current F,, or F,” at the other two points, say y and , plus an expression
with (x,v) and ( y,u) interchanged, and the system closes algebraically. The
formulas are just like Eq. 1. We shall assume here the validity of the basic
light-cone algebraic system, and discuss the possible generalization to
products and to disconnected parts. In Section 4, we conclude from the
generalization to products that the form of an expression like (vaclF,(x)
Fp(y,2)lvacy for disconnected parts is uniquely determined from the
consistency of the connected light-cone algebra to be a number N times
the corresponding expression for three free Fermi-Dirac quarks, when x,y,
and z tend to lie on a straight lightlike line. The 7°—2y amplitude in the
PCAC approximation is then calculated in terms of N and is proportional
to it. Thus we do not want N to be zero.

The asymptotic ratio o(e*e”—hadrons)/o(e*e”—u*p”) from one-
photon annihilation is also proportional to N. We may either determine N
from the observed #°—2y amplitude and then compute this asymptotic
ratio approximately, or else appeal to a model and abstract the exact value
of N, from which we calculate the amplitude of 7°—2y. In a model, N
depends on the statistics of the quarks, which we discuss in the next
section.
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3. STATISTICS AND ALTERNATIVE SCHEMES

As we remarked in Section 1, the presumably unwanted Fermi-Dirac
statistics for the quarks, with N=1, would give o(e*e” —hadrons)
/a(ete” —p*u")—2/3. (Such quarks could be real particles, if necessary.)
Now let us consider the case of “quark statistics,” equivalent to para-Fermi
statistics of rank 3 with the restriction that all physical particles be bosons
or fermions. (Quarks are then fictitious, permanently bound. Even if we
applied the restriction only to baryons and mesons, quarks would still be
fictitious, as we can see by applying the principle of cluster decomposition
of the S-matrix.)

The quark field theory model or the “quark-gluon™ model is set up
with three fields, g, ¢z, and gy, each with three ordinary SU(3) com-
ponents, making nine in all. Without loss of generality, they may be taken
to anticommute with one another as well as with themselves. The currents
all have the form §rq, + @395+ Gy-qy, and are singlets with respect to the
SU(3) of color. The physical states too are restricted to be singlets under
the color SU(3). For example, the g7 configuration for mesons is only
Grir+ 3895+ Gwqw, and the ggq configuration for baryons is only
9r9p9w ~ 9p9r9w + Gwdrds — 9r9wds + 959wdr — Iwdpqg- Likewise all the
higher configurations for baryons and mesons are required to be color
singlets.

We do not know how to incorporate such restrictions on physical
states into the formalism of the “quark-gluon™ field theory model. We
assume without proof that the asymptotic light-cone results for current
commutators and multiple commutators are not altered. Since the currents
are all color singlets, there is no obvious contradiction.

The use of quark statistics then gives N=3 and o(e*e” —hadrons)
/o(e*e” —p*pu")—2. This is the value that we predict.

We should, however, examine other possible schemes. First, we might
treat actual para-Fermi statistics of rank 3 for the quarks without any
further restriction on the physical states. In that case, there are excited
baryons that are not fermions and are not totally symmetric in the 3¢q
configuration; there are also excited mesons that are not bosons. Whether
the quarks can be real in this case without violating the principle of
“cluster decomposition” (factorizing of the S-matrix when a physical
system is split into very distant subsystems) is a matter of controversy;
probably they cannot. In this situation, N is presumably still 3.

Another situation with N =3 is that of a physical color SU(3) that can
really be excited by the strong interaction. Excited baryons now exist that
are in octets, decimets, and so on with respect to color, and mesons in
octets and higher configurations. Many conserved quantum numbers exist,
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and new interactions may have to be introduced to viclate them. This is a
wildly speculative scheme. Here the nine quarks can be real if necessary,
that is, capable of being produced singly or doubly at finite energies and
identified in the laboratory.

We may consider a still more complicated situation in which the
relationship of the physical currents to the current nonet in the connected
algebra is somewhat modified, namely, the Han-Nambu scheme.'* Here
there are nine quarks, capable of being real, but they do not have the
regular quark charges. Instead, the u quarks have charges 1, 1,0, averaging
to %; the d quarks have charges 0,0, — 1, averaging to —4{; and the s
quarks also have charges 0,0, — 1, averaging to — 4. In this scheme, not
only can the analog of the color variable really be excited, but also it is
excited even by the electromagnetic current, which is no longer a “color”
singlet. Since the expressions for the electromagnetic current in terms of
the current operators in the connected algebra are modified, this situation
cannot be described by a value of N. It is clear, however, from the quark
charges, that the asymptotic behavior of the disconnected part gives, in the
Han-Nambu scheme, o(e*e” —hadrons)/o(e*e” —p"pn")—4. Because the
formulas for the physical currents are changed, numerical predictions for
deep inelastic scattering are altered too. For example, instead of the
inequality 4 <[F*(£)/F¥(£))<4 for deep inelastic scattering of electrons
from neutrons and protons, we would have { L[F®™(£)/F#(£)]<2. How-
ever, comparison of asymptotic values with experiment in this case may
not be realistic at the energies now being explored. The electromagnetic
current is not a color singlet; it directly excites the new quantum numbers,
and presumably the asymptotic formulas do not become applicable until
above the thresholds for the new kinds of particles. Thus, unless and until
entirely new phenomena are detected, the Han-Nambu scheme really has
little predictive power.

A final case to be mentioned is one in which we have ordinary “quark
statistics” but the usual group SU(3) is enlarged to SU(4) to accomodate a
“charmed” quark »’ with charge % which has no isotopic spin or ordinary
strangeness but does have a nonzero value of a new conserved quantum
number, charm, which would be violated by weak interactions (in such a
way as to remove the strangeness-changing part from the commutator of
the hadronic weak charge operator with its Hermitian conjugate). Again
the expression for the physical currents in terms of our connected algebra
is altered, and again the asymptotic value of o(e*e” —hadrons)
/o(ete” - p*p~)is changed, this time to [(3)%+
(=8 +(—4)* + (3?3 =4. Justasinthe Han-Nambu scheme, the
predictive power is very low here until the energy is above the threshold
for making “charmed” particles.



104

H. Fritzsch

Murray Gell-Mann Downloaded from www.worldscientific.com

by WSPC on 06/06/17. For personal use only.

207

Derivation of the #°—2y Amplitude in the PCAC Approximation 147

We pointed out in Section 1 that for three Fermi-Dirac quarks the
Adler amplitude is too small by a factor of 3. For all the other schemes
quoted above, however, it comes out just right and the decay amplitude of
7°—2y in the PCAC limit agrees with experiment. One may verify that for
all of these schemes 30,,,’— 30 _,,,*=1.The various schemes are sum-
marized in the following table.

(e*e” —hadrons) Can quarks
Scheme (e*te~—p*p”) be real?
“Quark statistics” 2 No
Para-Fermi statistics
rank 3 2 Probably not
Nine Fermi-Dirac quarks 2 Yes
Han-Nambu, Fermi-Dirac 4 Yes
Quark statistics + charm 10/3 No
Para-Fermi, rank 3+charm 10/3 Probably not
Twelve Fermi-Dirac+ charm 10/3 Yes

In what follows, we shall confine ourselves to the first scheme, as
requiring the least change in the present experimental situation.

4. DERIVATION OF THE #°-2y AMPLITUDE IN THE PCAC APPROXI-
MATION

In the derivation sketched here, we follow the general idea of Wilson’s and
Crewther’s method. We lean more heavily on the connected light-cone
current algebra, however, and we do not need to assume full conformal
invariance of matrix elements for small values of the coordinate
differences.

To discuss the #°—2y decay in the PCAC approximation, we shall
need an expression for

{vaclF, (x)F( ¥ )F; ys (x)|vac)
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when xay=a:z. (Here e is the direction in SU(3) space of the electric
charge.) In fact, we shall consider general products of the form

(vaclr (x, )F(x,) -+ - F(x,)|vac)

where F's stand for components of any of our currents, and we shall
examine the leading singularity when x,x,,...,x, tend to lie among a
single lightlike line. (The case when they tend to coincide is then a
specialization.)

We assume not only the validity of the connected light- cone algebra,
which implies scale invariance for commutators near the light cone, but
also scale invariance for products near the lightcone, with leading dimen-
sion /= -3 for all currents. There may be subtraction terms in the
products, or at least in physical ordered products, for example, subtrac-
tions corresponding to four-dimensional § functions in coordinate space;
these are often determined by current consrvation. But apart from the
subtraction terms the current products near the light cone have no choice,
because of causality and their consequent analytic properties in coordinate
space, but to obey the same formulas as the commutators, with ime(z)8(z?)
replaced by 4(z2—izee)™" for products and i(z*—ie)~! for physical or-
dered products.

Our general quantity {vac|r(x )F(x,)---F(x,)|vac> may now be re-
duced, using successive applications of the product formulas near the light
cone and ignoring possible subtraction terms, since all the intervals (x,-x)?
tend to zero, as they do when all the points x, tend to lie on the same
lightlike line.

A contraction between two currents F(x;),F(x;) gives a singular func-
tion S(x;—x) times a bilocal F(x;x;). If we now contract another local
current with the bilocal, we obtain S(x, —x)S(x, — x)F(x.x,) and so on.

As long as we do not exhaust the currents, our intermediate states
have particles in them and we are using the connected algebra generalized
to products. Finally, we reach the stage where we have a string of singular
functions multiplied by (vacfF(x;,x)F(x,)|vac),and the last contraction
amounts to knowing the disconnected matrix element of a current product.
However, the leading singularity structure of this matrix element ca. also
be determined from the light-cone algebra by requiring consistent reduc-
tions of the three current amplitudes.

We can algebraically reduce a three-current amplitude in two possible
ways. For each reduction, the algebra implies the existence of a known
light-cone singularity. The reductions may also be carried out for an
amplitude with a different ordering of the currents. One reduction of this
amplitude yields the same two-point function as before, whereas the other
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reduction implies the existence of a second singularity in the two-point
function. Hence we may conclude that the leading singularity of the
two-point function when all points tend to a light line is given by the
product of the two singularities identified by these reductions. Similarly,
the leading singularity of the three-current amplitude is given by the
product of the three singularities indicated by the different reductions.
Since the connected light-cone algebra can be abstracted from the free
quark model, the result of this analysis implies that the leading singularities
of the two- and three-point functions are also given by the free quark
model (say, with Fermi-Dirac quarks) and the only undetermined para-
meter is an overall factor, N, by which all vacuum amplitudes must be
multiplied.

Since the singularity structure of the two-point function is determined,
we can identify at least a part of the leading light line singularity of the n
current amplitudes. Each different reduction of the n current amplitudes
implies free quark singularities associated with this reduction. For two,
three, and four current amplitudes, all of the singularities can be directly
determined from the different reductions. For the five and higher-point
functions not all of the singularities can be directly determined, but it is
plausible that these others also have the free quark structure.

For the asymptotic value of o(e*e” —hadrons)/o(e*e”—p ™), we
are interested in the vacuum expected value of the commutator of two
electromagnetic currents, and it comes out equal to N times a known
quantity. Similarly, more complicated experiments testing products of four
currents, for example, e*e™ annihilation into hadrons and a massive muon
pair or “y”—*y" annihilation into hadrons, might be considered. Also
these processes are, in the corresponding deep inelastic limit, completely
determined by the number V.

Returning to 7°—2y in the PCAC approximation, we have (vac|F,,(x)
F,B{y)f:,,s{z)wac) as the three space-time points approach a lightlike line,
apart from subtraction terms, in terms of N times a known quantity. We
now need only appeal to Wilson’s argument (as elaborated by Crewther).
The vacuum expected value of the physically ordered product T(F,,(x),
Fop( ), 8.F5,°(2)), taken at low frequencies, is what we need for the 7°—2y
decay with PCAC, and the Wilson-Crewther argument shows that it is
determined from the small-distance behavior of (vacil:m{x)F,ﬂ(y)F,f(z)
|vac), with the subtraction terms (which are calculable from current
conservation in this case) playing no role. This remarkable superconver-
gence result, that the low-frequency matrix element can be calculated from
a surface integral around the leading short-distance singularity (which is
the same as the singularity if all three points tend to a lightlike line), makes
possible the derivation of m’—2y in the PCAC approximation from the
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light-cone current algebra. We come out with the Adler result (i.e., the
result for three Fermi-Dirac quarks) multiplied by N.

Thus the connected light-cone algebra provides a link between the
7%—2y decay and the asymptotic ratio o(e*e~ —hadrons)/o(e*e”—p*p").
Of course, one might doubt the applicability of PCAC to #° decay, or to
any process in which other currents are present in addition to the axial
vector current connected to the pion by PCAC. If the connected algebra is
right, including products, then failure of the asymptotic ratio of the e*e”
cross sections to approach the value 2 would be attributed either to such a
failure of PCAC when other currents are present or else to the need for an
alternative model such as we discussed in Section 3.

As a final remark, let us mention the “finite theory approach,” as
discussed in ref. 4 in connection with the light-cone current algebra. Here
the idea is to abstract results not from the formal “quark-gluon” field
theory model, but rather from the sum of all orders of perturbation theory
(insofar as that can be studied) under two special assumptions. The
assumptions are that the equation for the renormalized coupling constant
that allows for a finite coupling constant renormalization has a root and
that the value of the renormalized coupling constant is that root. Under
these conditions, the vacuum expected values of at least some current
products are less singular than in the free theory. Since the Adler result still
holds in the “finite theory case,” the connected light-cone algebra would
have to break down. In particular, the axial vector current appearing in the
commutator of certain vector currents is multiplied by an infinite constant.
There are at present two alternative possibilities for such a “finite theory™:

1. Only vacuum expected values of products of singlet currents are
less singular than in the free theory;'* only the parts of the algebra that
involve singlet currents are wrong (e.g., the bilocal singlet axial vector
current is infinite); the e®e™ annihilation cross section would still behave
scale invariantly.

2. All vacuum expected values of current products are less singular
than in the free theory; the number N is zero; all bilocal axial vector
currents are infinite; the e*e™ annhilation cross section would decrease
more sharply at high energies than in the case of scale invariance.
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I. Introduction

For more than a decade, we particle theorists have been squeezing predictions out of a mathe-
matical field theory model of the hadrons that we don’t fully believe -~ a model containing a
triple of spin 1/2 fields coupled universally to a neutral spin 1 field, that of the “gluon”. In
recent years, the triplet is usually taken to be the quark triplet, and it is supposed that there is a
transformation, presumably unitary, that effectively converts the current quarks of the relativi-
stic model into the constituent quarks of the naive quark model of baryon and meson spectrum
and couplings.

We abstract results that are true in the model to all orders of the gluon coupling and postulate
that they are really true of the electromagnetic and weak currents of hadrons to all orders of
the strong interaction. In this way we build up a system of algebraic relations, so-called current
algebra, and this algebraic system gets larger and larger as we abstract more and more proper-
ties of the model.

In section III, we review briefly the various stages in the history of current algebra. The older
abstractions are correct to each order of renormalized perturbation theory in the model®), while
the more recent ones, those of light cone current algebra, are true to all orders only formally®).
We describe the results of current algebra? in terms of commutators on or near a null plane,
say 3+ xg = 0.

In section IV, we attempt to describe, in a little more detail, using null plane language, the sys-
tem of commutation relations valid in a free quark model that are known to remain unchanged
(at least formally) when the coupling to a vector “gluon” is turned on. These equations give
us a formidable body of information about the hadrons and their currents, supposedly exact as
far as the strong interaction is concerned, for comparison with experiment. However, they by
no means exhaust the degrees of freedom present in the model; they do not yield an algebraic
system large enough to contain a complete description of the hadrons. In an Appendix, the
equations of Section IV are related to form factor algebra.

In Section V, we discuss how further commutation of the physical quantities arising from light
cone algebra leads, in the model field theory, to results dependent on the coupling constant,
to formulae in which gluon field strength operators occur in bilocal current operators prolifer-
ate. Only when these relations are included do we finally get an algebraic system that contains
nearly all the degrees of freedom of the model. We may well ask, however, whether it is the
right algebraic system. We discuss briefly how the complete description of the hadrons involves
the specification and slight enlargement of this algebraic system, the choice of representation of
the algebra that corresponds to the complete set of hadron states, and the form of the mass or
the energy operator, which must be expressible in terms of the algebra when it is complete. The
choice of representation may be dictated by the algebra, and if so that would justify the use of
a quark and gluon Fock space by some “parton” theorists.

Finally, in Section VI, it is suggested that perhaps there are alternatives to the vector gluon
model as sources of information or as clues for the construction of the true hadron theory. As-
suming we have described the quark part of the model correctly, can we replace the gluons
by something else? The “string” or “rubber band” formulation, in ordinary coordinate space,



112

H. Fritzsch

vorldscientific.com

Murray Gell-Mann D

243

g
[9]
2
@
=

=
=

of the zeroth approximation to the dual resonance model, is suggested as an interesting example.
Before embarking on our discussion of current algebra, we discuss in Section II the crucial

point that quarks are probably not real particles and probably obey special statistics, along
with related matters concerning the gluons of the field theory model.

I1. FICTITIOUS QUARKS AND “GLUONS” AND THEIR STATISTICS

We assume here that quarks do not have real counterparts that are detectable in iso-
lation in the laboratory — they are supposed to be permanently bound inside the mesons
and baryons. In particular, we assume that they obey the special quark statistics, equi-
valent to “para-Fermi statistics of rank three” plus the requirement that mesons always
be bosons and baryons fermions. The simplest description of quark statistics involves
starting with three triplets of quarks, called red, white, and blue, distinguished only by
the parameter referred to as color. These nine mathematical entities all obey Fermi-Dirac
statistics, but real particles are required to be singlets with respect to the SUs of color,
that is to say combinations acting like

Grar+0dpqs+dwaw OF GreBGw —4BGRIW — GRIWTE — qWIBIR + IWqRIB +qBqWqR - (1)

The assumption of quark statistics has been common for many years, although not ne-
cessarily described in quite this way, and it has always had the following advantage: The
constituent quarks as well as current quarks would obey quark statistics, since the trans-
formation between them would not affect statistics, and the constituent quark model
would then assign the lowest-lying baryon states (56 representation) to a symmetrical
spatial configuration, as befits a very simple model.

Nowadays there is a further advantage. Using the algebraic relations abstracted formally
from the quark-gluon model, one obtains a formula for the 7° decay amplitude in the
PCAC approximation, one that works beautifully for quark statistics but would fail by a
factor 3 for a single Fermi-Dirac triplet?.

We have the option, no matter how far we go in abstracting results from a field theory
model, of treating only color singlet operators. All the currents, as well as the stress-
energy-momentum tensor ©,, that couples to gravity and defines the theory, are color
singlets. We may, if we like, go further and abstract operators with three quark fields,
or four quark fields and an antiquark field, and so forth, in order to connect the vacuum
with baryon states, but we still need select only those that are color singlets in order to
connect all physical hadron states with one another.

It might be a convenience to abstract quark operators themselves, or other non-singlets
with respect to color, along with fictitious sectors of Hilbert space with triality non-zero,
but it is not a necessity. It may not even be much of a convenience, since we would then,
in describing the spatial and temporal variation of these fields, be discussing a fictitious
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spectrum for each fictitious sector of Hilbert space, and we probably don’t want to load
ourselves with so much spurious information.

We might eventually abstract from the quark-vector-gluon field theory model enough
algebraic information about the color singlet operators in the model to describe all the
degrees of freedom that are present.

For the real world of baryons and mesons, there must be a similar algebraic system, which
may differ in some respects from that of the model, but which is in principle knowable.
The operator ©,, could then be expressed in terms of this system, and the complete
Hilbert space of baryons and mesons would be a representation of it. We would have
a complete theory of the hadrons and their currents, and we need never mention any
operators other than color singlets.

Now the interesting question has been raised lately whether we should regard the gluons
as well as the quarks as being non-singlets with respect to color®. For example, they
could form a color octet of neutral vector fields obeying the Yang-Mills equations. (We
must, of course, consider whether it is practical to add a common mass term for the gluon
in that case -~ such a mass term would show up physically as a term in ©,, other than
the quark bare mass term. In the past, we have referred to such an additional term that
violates scale invariance, but does not violate SU; x SU; as 4 and its dimension as [;.
Nowadays, ways of detecting expected values of § are emerging.)®.

If the gluons of the model are to be turned into color octets, then an annoying asymmetry
between quarks and gluons is removed, namely that there is no physical channel with
quark quantum numbers, while gluons communicate freely with the channel containing
the w and ¢ mesons. (In fact, this communication of an elementary gluon potential with
the real current of baryon number makes it very difficult to believe that all the formal
relations of light cone current algebra could be true even in a “finite” version of singlet
neutral vector gluon field theory.)

If the gluons become a color octet, then we do not have to deal with a gluon field strength
standing alone, only with its square, summed over the octet, and with quantities like
G (8, — 1goaBa,) g, where the o's are the eight 3 x 3 color matrices for the quark and the
B’s are the eight gluon potentials.

Now, suppose we look at such a model field theory, with colored quarks and colored
gluons, including the stress-energy-momentum tensor. Basically the questions we are
asking are the following:
1. Up to what point does the algebraic system of the color singlet operators for the
real hadrons resemble that in the model? What is it in fact?

2. Up to what point does the representation of the algebraic system by the Hilbert
space of physical hadron states resemble that in the model? What is it in fact?

3. Up to what point does ©,,, expressed in term of the algebraic system, resemble
that in the model? What is it in fact?
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The measure of our ignorance is that for all we know, the algebra of color singlet op-
erators, the representation, and even the form of ©,, could be exactly as in the model!
We don'’t yet know how to extract enough consequences of the model to have a decisive
confrontation with experiment, nor can we solve the formal equations for large g.

If we were solving the equations of a model, the first question we would ask is: Are the
quarks really kept inside or do they escape to infinity? By restricting physical states and
interesting operators to color singlets only, we have to some extent begged that question.
But it re-emerges in the following form:

With a given algebraic system for the color singlet operators, can we find a locally causal
©,. that yields a spectrum corresponding to mesons and baryons and antibaryons and
combinations thereof, or do we find a spectrum (in the color singlet states) that looks like
combinations of free quarks and antiquarks and gluons?

In the next three Sections we shall usually treat the vector gluon, for convenience, as a
color singlet.

III. REVIEW OF CURRENT ALGEBRA

In this section we sketch the gradual extension of algebraic results abstracted from free
quark theory that remain true, either in renormalized perturbation theory or else only
formally, when the coupling to a neutral vector gluon field is turned on.

The earlier abstractions were of equal-time commutation relations of current components.
It was soon found that useful sum rules could best be derived from these by taking matrix
elements between hadron states of equal P; as P; — oo, selecting the “gluon” components
of the currents (those with matrix elements finite in this limit rather than tending to zero),
and adding the postulate that, in the sum over intermediate states in the commutator,
only states of finite mass need be considered. Thus formulae like the Adler-Weisberger
and Cabibbo-Radicati sum rules were obtained and roughly verified by experiment.
Nowadays, the same procedure is usually accomplished in a slightly different way that is
a bit cleaner - the hadron momenta are left finite instead of being boosted by a limit of
Lorentz transformations, and the equal time surface is transformed by a corresponding
limit of Lorentz transformations into a null plane, with z3 + zo = constant, say zero. The
hypothesis of saturation by finite mass intermediate states is replaced by the hypothesis
that the commutation rules of good components can be abstracted from the model not
only on an equal time plane, but on a null plane as well”®).

In the last few years, the process of abstraction has been extended to a large class of
algebraic relations (those of “light cone current algebra”) that are true only formally in
the model, but fail to each order of renormalized perturbation theory - they would be true
to each order if the model were super-renormalizable. The motivation has been supplied
by the compatibility of the deep inelastic electron scattering experiments performed at
SLAC with the scaling predictions of Bjorken, which is the most basic feature of “light
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cone current algebra”. The Bjorken scaling limit g —00,2p-q— 0, = q*/ (=2p-q)
finite) corresponds in coordinate space to the singularity on the light cone (z — =0
of the current commutator [j(z),j(y)], and the relations of light cone current algebra are
obtained by abstracting the leading singularity on the light cone from the field theory
model. The singular function of z — y is multiplied by a bilocal current operator O(z,y)
that reduces to a familiar local current as  —y — 0. The Bjorken scaling functions F (£)
are Fourier transforms of the expected values of the bilocal operators. Numerous predic-
tions emerge from the relations abstracted from the quark—gluon model for deep inelastic
and neutrino cross-sections. For example, the spin 1/2 character for the quanta bearing
the charge in the model is reflected in the prediction oy, /o — 0, while the charges of the
quarks are reflected in the inequalities 1/4sF*" (§) / FeP(€) < 4. So far there is no clear
sign of my contradiction between the formulae and the experimental results.

We may go further and abstract from the model also the light-cone commutators of bilocal
currents, in the limit in which all the intervals among the four points approach zero, that
is to say, when all four points tend to lie on a light-like line. The same bilocal operators
then recur as coefficients of the singularity, and the algebraic system closes.

The light cone results can be reformulated in terms of the null plane. We consider a
commutator of local currents at two points z and y and allow the two points to approach
the same null plane, say

$+El'3+xo=0,y+5y3+'y0:0 (2)

As mentioned above, when both current components are “good”, we obtain a local com-
mutation relation on the null plane, yielding another good component, or else zero. But
when neither component is good, there is a singularity of the form

d(zs —y4) (3)

and the coefficient is a bilocal current on the null plane. It is this singularity, arising from
the light—cone singularity, that gives the Bjorken scaling.

On the null plane, with z, = 0, the three coordinates are the transverse spacelike co-
ordinates z, and x5 (called x,) and the lightlike coordinate x_ = z3 — . Our bilocal
currents O (u, y) on the nullplane are functions of four coordinates: z_,y_ and z; = yu,
since the interval between = and y is lightlike.

We may now consider the commutator of two bilocal currents defined on neighboring null
planes (in each case with a lightlike interval between the two arguments of the bilocal cur-
rent). Again, when neither current component is good, there is a §-function singularity
of the spacing between the two null planes and the coefficient is a bilocal current defined
on the common limiting null plane. In this language, as before in the light cone language,
the system of bilocal currents closes.

We may commute two good components of bilocal currents on the same null plane, and,
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as for local currents, we obtain a good component on the right-hand side, without any
d-function singularity at coincidence of the two null planes. Thus the good components
of the bilocal currents O(u,y) form a Lie algebra on the null plane, a generalization of
the old Lie algebra of local good components on the null plane (recovered by putting
2o =)

Now, how far can we generalize this new Lie algebra on the null plane and still obtain
exact formulae, formally true to all orders in the coupling constant, but independent of
it, so that free quark formulae apply?

In the next section, we take up that question, but first we summarize the situation of
current algebra on and near the null plane.

IV. SUMMARY OF LIGHT N ND NUL LANE RESUL
Let us now be a little more explicit. We are dealing with 144 bilocal quantities 7o, Fja, Sj, F

and Tj,p all functions of x — y with (z — y)? — 0. Let us select the 3-direction for our
null planes. Then in the model we can set B, = By + By = 0 for the gluon potential

x
by a choice of gauge. The gauge—invariance factor exp ig [ B - dl for a straight line path
¥

on a null plane is just exp [i§B+ (z- — y_)] = 1. Thus we have simple correspondences
between our quantities and operators in the model:

i
Fialz,y) ~ 54(2)A%q(v), ete.
and we have introduced the notation D (:c,y, % Aj 'ya), etc., where
D(z,y,G) ~ q(z)Gq(y) ~ ¢" (z)(BG)q(y) - (4)
We are dealing with D(z,y, G) for every (12 x 12) matrix G, with

Fral@,y)

i 1
D(I\y‘ 5’\3-&0’}‘5) Sj(x!y) ‘__D(Ivy\EAg) i (5}

i

Pi(z.y) = D(x,y,%/\j 75), and Tjop(z,y) = D(:r:, TR auﬂ). (6)

The good components, in the old equal-time P; — oo language, were those with finite
matrix elements between states of finite mass and P; — oo. By contrast, bad components
were those with matrix elements going like Py ~! and terrible components those with ma-
trix elements going like P; ~2.
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In the null plane language, good components are those for which 8G is proportional
to 1 4+ ay; thus the 36 good components are J'-'j+,}'j5+‘ T1+, Doy for j = 0...8. The
terrible components are those for which GG is proportional to 1 —aj, hence F;_, ff_,’}}l,
and T;5_. The rest are bad; they have G anticommuting with a3 so that ag is -1 on the
left and +1 on the right or vice versa.

Now the leading light cone singularity in the commutator of two bilocals is just given by

the formula

(D (z,y,G), D (u,v,G"))) =D (z,v,iGV.G") 8, Ay — u) — D (u,4,iG'7,G) B, A(v — ),
(7)

with A(z) = (27) ' e (20) 6 (22).

When we commute two operators with coordinates lying on neighboring null planes with
separation Az, a singularity of the type § (Az, ) appears (as we have mentioned in Sec-
tion IIT) multiplied by a bilocal operator, with coordinates lying in the common null plane
as Az, — 0, and it is this term that gives rise to Bjorken scaling. The term in question
comes from the component %A{z} in 8,A(z), and is thus multiplied by D (z, v, iGy.G")
and D (u,y,iG"y;G). Now B (iGy:G') = (BG) (1 — ag) (BG"), so it is clear that the sin-
gular Bjorken scaling term vanishes for good-good and good-bad commutators. In the
case of the other components, we have, schematically, [bad, bad] — good, [bad, terrible|
— bad, and [terrible, terrible] — terrible for the Bjorken singularity.

The vector and axial vector local currents Fj.(x,z) and F,,(x, z) occur, of course, in
the electromagnetic and weak interactions. The local scalar and pseudoscalar currents
occur in the divergences of the non—conserved vector and the axial vector currents, with
coefficients that are linear combinations of the bare quark masses, m,,, my and m,, treated
as a diagonal matrix. (Here m, would equal my if isotopic spin conservation were perfect,
while the departure of m, from the common value of m, and my is what gives rise to SUs
splitting; the non-vanishing of m is what breaks SU; x SUs).

We see that all the 144 bilocals are physically interesting, including the tensor currents,
because they all occur in the commutators of these local V, A, S, and P densities as
coefficients of the 8 (Az. ) singularity. Commuting a local scalar with itself or a local
pseudoscalar with itself leads to the same bilocal as commuting a transverse component
of a vector with itself, and thus the light cone commutator of current divergences is pre-
dicted to lead to Bjorken scaling functions that are proportional to those observed in
the light cone commutation of currents, while the coefficients permit the experimental
determination of the squares of the quark bare masses. Unfortunately, the relevant expe-
riments are difficult. (The finiteness of the bare masses, as compared with the divergences
encountered term in renormalized perturbation theory in a gluon model, presumably has
the same origin as the scaling, which also fails term by term in renormalized perturbation
theory.)
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As we have outlined in Section III, we begin the construction of the algebraic system on
the null plane by commuting the good bilocals with one another. The leading singularity
on the light cone (Eq.(4.1)) gives rise to the simple closed algebra we have mentioned, but
we need also the additional assumption that lower singularities on the light cone give no
contribution to the good-good commutators on the null plane. This additional assump-
tion can be squeezed out of the model in various ways. The simplest, however, is to use
canonical quantization of the quark-gluon model on the null plane.

In the model, the quark field ¢ is written as g, + ¢_, where gu. = é (1 £ as)g. Then g,

obeys the canonical rules {g;a(z), ¢:5(¥)} = 0, {g:a(2).q35(¥)} = 69 (z — 1)} (1 + as),p
on the null plane, where 6 (z—y) = é (z, —y,) 6 (z_ — y_). Thus for any good matrices
BA;; and (B, ), we have on the null plane

[D(z,y,8A++),D (u,v,BB44)] =
D(z,vBAL+Byy) (5(3)(y —u)=D(u,y,6B11ALy) 5(3}(1’ - z),

which is just what we would get from (4.1) with no additional contribution from lower
light cone singularities.

The good-good commutation relations (4.2) on the null plane, together with the equa-
tions (4.1) for the leading light cone singularity in the commutator of two bilocal currents,
illustrate how far we can go with abstracting free quark formulae that are formally un-
changed in the model when the gluon coupling is turned on.

One may go further in certain directions. For example, the formulae for the leading light
cone singularity presumably apply to disconnected as well as connected parts of matrix
elements, and thus the question of the vacuum expected value of a bilocal operator arises.
In the model, the coefficient of the leading singularity as (z — y)* — 0 of such an expected
value is formally independent of the coupling constant, and we abstract that as well -
the answer here is dependent on statistics, however, and we assume the validity of quark
statistics. Thus we obtain predictions like the following:

G(e++e' - ha.drons) /o (e++e_ —ut +p_) — 2 (8)
at high energy to lowest order in the fine structure constant.

The leading light cone singularity of an operator product, or of a physical order (T*)
product, may also be abstracted from the model, except for certain subtraction terms
(often calculable and / or unimportant) that behave like four-dimensional é-functions
in coordinate space. To go from a commutator formula to a physical ordered product
formula, we simply perform the substitutions

(2m) ' e(2)6 (22) — (4?r21')_] (22 — izoe)_l — (41?22')_1 (22 - z'e)ul : (9)
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With the aid of the product formulae and the vacuum expected values, we obtain the
PCAC value of the 7° — 27 decay amplitude.

Other exact abstractions from the vector gluon model that do not contain g are divergence
and curl relations for local V and A currents:

a i
a?;:'D (:C. z, 5 Ai "yy)

D (x‘ T, % [m, /\i]) ;

d i i
D (=2 Mws) = D (a5 {mAbs), (10)
but we also have, as presented elsewhere? |
d 1 i
e = o . As
8%1)(&:,12)\.0,1») 'D(x.z.-g{m‘ ‘}'Tv)
d aJ i
2P anis ,-,\.-) 11
(335,, ayl’) (z y 2 l:=y ( )
d 1 1
asz (x,a:? - /\iapv"ﬁ) = =D (I x, 5) [m, A wys
d d i
i (C SR )
and a number of other formulae, including the following:
d aJ 1 i
[(Bzu - ay,) D (2.0, 5,\,1”)]“” =D (2,25 (\m}) (13)

In the last three formulae, it must be pointed out that for a general direction of z —y we
have the gauge-invariant correspondence

D (2,y,G) ~ a(x)Galy) exp ig [ B-dl. (19)

which is independent of the path from y to = when the coordinate difference and the path
are taken as first order infinitesimals. The first internal derivative

(& - ) 2eve] o
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is physically interesting for all directions g (and not just the — direction), as a result of
Lorentz covariance.

In Eqs. (4.5-4.7), we have for the moment thrown off the restriction to a single null plane.
In the next Section, we return to the consideration of the algebra on the null plane, and
we see how further extensions give a much wider algebra, in which departures from free
quark relations begin to appear.

V. THE FURTHER EXTENSION OF NULL PLANE ALGEBRA

We now look beyond the commutation relations of good bilocals on the null plane. In
the model, then, we have to examine operators containing g_ or ¢* or both. The Dirac
equation in the gauge we are using (B, = 0 on the null plane) tells us that we have

- 2155 = (au - (i V1 ~gBL) + Bm) gy (16)

In terms of Eq. (5.1), we can review the various anticommutators on the null plane. We
have already discussed the trivial one,

(1+a3)d(zL —yL) . (17)

(Q+{I]‘ G‘i(y)) =d(z_ —y-) %

Using (5.1), (5.2), the fact that B, commutes with ¢; on the null plane, and the equal-
time anticommutator { Gas q_’;} = 0, we obtain well-known result

(1+a3)d(zL—y1)-
(18)

B | =

{o-),at @)} = je@ — v ) [ou (i v ~9Bu)) + O]

Using the same method a second time, one finds, for y_ > z_,

{o-@).at W)} = —% :_ dr_ [ay (=i 2 —gBy (z1,7-)) + m]’ (1 _203) 8 (s —y1)

+i§:- f:_ dy’. f: de’_[aqs (z1,2) 504 (ye,90) @] 8 (20 —w1)

l—a
6@ —y) (—52) das - w), (19)
where the singularity at the coincidence of the two null planes appears as an unplea-
sant integration constant. This singularity is, of course, responsible in the model for the
Bjorken singularity in the commutator of two bad or terrible operators.
Because of the singularity, it is clumsy to construct the wider algebra by commuting all
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our bilocals with one another. Instead, we adopt the following procedure. Whenever a
bilocal operator corresponds to one in the model containing ¢*(z), we differentiate with
respect to z_; whenever it corresponds to one in the model containing g¢), we differentiate
with respect to y_. Thus we “promote” all our bilocals to good operators. We construct
the wider algebra by starting with the original good bilocals and these promoted bad and
terrible bilocals. We commute all of these, commute their commutators, and so forth,
until the algebra closes. Then, later on, if we want to commute an unpromoted operator,
we use the information contained in equations of the model like (5.1) - (5.3) to integrate
over z_ or y_ or both and undo the promotion. (A similar situation obtains for operators
corresponding to those in the model containing the longitudinal gluon potential B_.)
Now let us classify the matrices SG into four categories:

the good ones, 3G = A, with az = 1 on both sides;

the bad ones 3G = A, _ that have a3 = 1 on the left and —1 on the right;

the bad ones 3G = A_, that have az = —1 on the left and +1 on the right;

and the terrible ones 3G = A__, with a3 = —1 on both sides.

Then, wherever g_ or ¢* appears, we promote the operator by differentiating ¢ or qt
with respect to its argument in the - direction. We obtain, then:

D(I| Y, ﬁA++} ]
the good operators, unchanged;

2 D(r,y,fA_,) and % (z,y,8, A;_) promoted bad operators:

Az
and
a%ayi_ﬂ (z,y,3A__), promoted terrible operators.

All 144 of these operators now are given, in the model, in terms of g, and g}, but
the promoted bad and terrible operators involve the expressions (7. —igB.)¢. and
(. +1igByi)qf. In fact, substituting the Dirac equation for g-jf into the definitions of
the promoted bad and terrible operators, we see that we obtain good operators (with
coefficients depending on bare quark masses) and also good matrices sandwiched between
(V. +igB.)qf and g4 or between ¢f and (v, —igB.)qs or between (V1 +igB1)q]
and (V. — i9B1) gs-

The null plane commutators of all these operators with one another are finite, well-defined,
and physically meaningful, but they lead to an enormous Lie algebra that is not identical
with the one for free quarks, but instead contains nearly all the degrees of freedom of the
model.

Let us first ignore any lack of commutation of the B's with one another. We keep commu-
ting the operators in question with one another. When 7, +igB, appears acting on a 5
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function, we can always perform an integration and fold it over onto an operator. Thus the
number of applications of 57, + igB, grows without limit. Since these gauge derivatives
do not commute with one another, but give field strengths as commutators, it can easily
be seen that we end up with all possible operators corresponding to gy (z)Gay(y) acted
on by any gauge invariant combination of transverse gradients and potentials. We have to
put it differently, the operators corresponding to . (z)Gaqy(y) exp ig f! B - dl for any pair

of points = and y on the null plane connected by any path P lying in the null plane. We
could think of these as operators D(z,y, G, P) depending on the path P, with G = A, ;.

In fact the B's do not commute with another in the model, and so we get an even more
complicated result. We have

[Bui(z), Bij(y)] ~e(z- —y_)d (L —y1) &y (20)

on the null plane, and the commutation of promoted bad and terrible bilocals with one
another leads to operators corresponding to g, (z)Gq.(y)§+(a)G'qs(b). Further commu-
tation then introduces an unlimited number of sideways gradients, gluon field strengths,
and additional quark pairs, until we end up with all possible operators of the model that
can be constructed from equal numbers of §.'s and ¢, ‘s at any points on the null plane
and from exponentials of ig [ B - d! for any paths connecting these points.

If we keep track of color, we note that only color singlets are generated. If the gluons are
a color octet Yang—Mills field, we must make suitable changes in the formalism but again
we find that only color singlets are generated. The coupling constant g that occurs is, of
course, the bare coupling constant. If may not be intrinsic to the algebraic system (equiv-
alent to that of quarks and gluons) on the null plane, but it certainly enters importantly
into the way we reach the system starting from well-known operators.

A troublesome feature of the extended null plane algebra is the apparent absence of oper-
ators corresponding to those in the model that contain only gluon field strengths and no
quark operators; for a color singlet gluon, the field strength itself would be such an oper-
ator, while for a color octet gluon we could begin with bilinear forms in the field strength
in order to obtain color singlet operators. Can we obtain these quark-free operators by
investigating discontinuities at the coincidence of coordinates characterizing quark and
antiquark fields in the model? At any rate, we certainly want these quarkfree operators
included in the extended algebra.

Now when our algebra has been extended to include the analogs of all relevant operators
of the model on the null plane that are color singlets and have baryon number A = 0, then
the Hilbert space of all physical hadron states with A = 0 is an irreducible representation
of the algebra.

If we wish, we might as well extend the algebra further by including the analogs of
color singlet operators of the model (on the null plane) that would change the number
of baryons. In that case, the entire Hilbert space of all hadron states is an irreducible
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representation of the complete algebra. From now on, let us suppose that we are al-
ways dealing with the complete color singlet algebra (whether the one abstracted from
the quark-gluon model or some other) and with the complete Hilbert space, which is an
irreducible representation of it.

The representation may be determined by the algebra and the uniqueness of the physical
vacuum. We note that we are dealing with arbitrarily multilocal operators, functions of
any number of points on the null plane. We can Fourier transform with respect to all these
variables and obtain Fourier variables (k,, k) in place of the space coordinates. Since
B, = 0, there is no formal obstacle to thinking of each k; as being like the contribution
of the individual quark, antiquark or gluon to the total Py = ¥ ky. Now Py =0 for the
vacuum, and for any other state we can get P, = 0 only by taking P, — —oo. The same
kind of smoothness assumption that allows scaling can allow us to forget about matrix
elements to such infinite momentum states. In that case, we have the unique vacuum
state of hadrons as the only state of P, = 0, while all others have Py > 0. All Fourier
components of multilocal operators for which 3 ky < 0 annihilate the physical vacuum.
(Note in the null plane formalism we do not have to deal with a fictitious “free vacuum”
as in the equal-time formalism.) The Fourier components of multilocal operator with
Sk, > 0 act on the vacuum to create physical states, and the orthogonality properties
of these states and the matrix elements of our operators sandwiched between them are
determined largely or wholly by the algebra. The details have to be studied further to
see to what extent the representation is really determined. (The vacuum expected values
contain one adjustable parameter in the case of free quarks, namely the number of colors.)
Once we have the representation of the complete color singlet algebra on the null plane,
as well as the algebra itself, then the physical states of hadrons can all be written as lin-
ear combinations of the normalized basis states of the representation. These coefficients
represent a normalized set of Fock space wave functions for each physical hadron state,
with orthogonality relations for orthogonal physical states. Since the matrix elements
of all null plane operators between basis states are known, the matrix elements between
physical states of bilocal currents or other operators of interest are all calculable in terms
of the Fock space wave functions?.

This situation is evidently the one contemplated by “parton” theorists such as Feynman
and Bjorken; they suppose that we know the complete algebra, that it comes out to be
a quark-gluon algebra, and that the representation is the familiar one, so that there is a
simple Fock space of quark, antiquark, and gluon coordinates. In the Fourier transform,
negative values of each k, correspond to destruction and positive values to creation.
Now the listing of hadron states by quark and gluon momenta is a long way from listing
by meson and baryon moments. However, as long as we stick to color singlets, there is
not necessarily any obstacle to getting one from the other by taking linear combinations.
The operator M2 = —P? — P, P_ has to be such that its eigenvalues correspond to meson
and baryon configurations, and not to a continuum of quarks, antiquarks and gluons.
The important physical questions are whether we have the correct complete algebra and
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representation, and what the correct form of ©,, or P, or M? is, expressed in terms of
that algebra.
In the quark-gluon model we have ©,, = ©%¥* + @8l where

1. , 1. .
oI = 0% (3 —igB)a+...q+ 30% (9 —igB.)g

1 ) _ 1 . )
=7 Ou+igBu)anq - 5(8,, +19B,) 47uq s (21)

and ©8" does not involve the quark variables at all. The term Ok by itself, has the
wrong commutation rules to be a true ©,,, (unless g = 0). For example, (.Pf'“"k, P;""k) #

0. The correct commutation rules are restored when we add the contribution from 8}";'9.
We can abstract from the quark-gluon model some or all the properties of ©,,, in terms
of the null plane algebra. We see that in the model we have

a
ok = [(dyi = (97) v(xy}v)] (22)

=N

and, as is well-known, the expected value of the right-hand side in the proton state can
be measured by deep inelastic experiments with electrons and neutrinos. All indications
are that it is not equal to the expected value of ©,, but rather around half of that, so
that half is attributable to gluons, or whatever replaces them in the real theory.

In general, using the gauge-invariant definition of D, we have in the model
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and Eq. (4.7) then gives us the obvious result
- Ol = D(z,z,m) . (24)

Whereas in (5.5) we are dealing with an operator that belongs to the null plane algebra
generated by good, promoted bad, and promoted terrible bilocal currents, other compo-
nents of 633’“" are not directly contained in the algebra, neither are the bad and terrible
local currents, nor their internal derivatives in directions other than —. In order to obtain
the commutation properties of all these operators with those actually in the algebra, we
must, as we mentioned above, undo the promotions by abstracting the sort of information
contained in (5.3) and (5.4). Thus we are really dealing with a wider mathematical sys-
tem than the closed Lie algebra abstracted from that of operators in the model containing

qf,q, and B, only.
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We shall assume that the true algebraic system of hadrons resembles that of the quark-
gluon model at least to the following extent:

1) The null plane algebra of good components (4.2) and the leading light cone singu-
larities (4.1) are unchanged.

2) The system acts as if the quarks had vectorial coupling in the sense that the diver-
gence equation (4.3) and (4.4) are unchanged.

3) There is a gauge derivative of some kind, with path-dependent bilocals that for an
infinitesimal interval become path-independent. Eqs. (4.5) - (4.7) are then defined
and we assume they also are unchanged.

4) The expression (5.6) for eﬁﬂ‘“k is also defined and we assume it, too, is unchanged,
along with its corollary (5.7).

About the details of the form of the path-dependent null plane algebra arising from the
successive application of gauge derivatives, we are much less confident, and correspond-
ingly we are also less confident of the nature of the gluons, even assuming that we can
decide whether to use a color singlet or a color octet. What we do assert is that there is
some algebraic structure analogous to that in quark-gluon theory and that it is in prin-
ciple knowable.

One fascinating problem, of course, is to understand the conditions under which we can
have an algebra resembling that for quarks and gluons and yet escape having real quarks
and gluons. Under what conditions do the bilocals act as if they were the products of
local operators without, in fact, being seen. We seek answers to this and other questions
by asking “Are there models other than the quark-gluon field theory from which we can
abstract results? Can we replace eg{:’e by something different and the gauge-derivative
by a different gauge-derivative?”

VI. ARE THERE ALTERNATIVE MODELS?

In the search for alternatives to gluons, one case worth investigating is that of the simple
dual resonance model. It can be considered in three stages: first, the theory of a huge
infinity of free mesons of all spins; next, tree diagrams involving the interaction of these
mesons; and finally loop diagrams. The theory is always treated as though referring to
real mesons, and an S-matrix formulation is employed in which each meson is always on
the mass shell.

Now the free stage of the model can easily be reformulated as a field theory in ordinary
coordinate space, based on a field operator ® that is a function not of one point in space,
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but of a whole path — it is infinitely multilocal. The free approximation to the dual reso-
nance model is then essentially the quantum theory of a relativistic string or linear rubber
band in ordinary space.

The coupling that leads, on the mass shell, to the tree diagrams of the dual resonance
model has not so far been successfully reformulated as a field theory coupling but we shall
assume that this can be done. Then the whole model theory, including the loops, would
be a theory of a large infinity of local meson fields, all described simultaneously by a grand
infinitely multilocal field ®, couples to themselves and one another. The mesons, in the
free approximation, lie on straight parallel Regge trajectories with a universal slope a'.
In the simplest form of such a theory, the grand field ® (path) can be resolved into local
fields @(R), @nu(R), Prpnrw (R),. ... There is a single scalar, a single infinity of vectors, a
double infinity of tensors and scalars, and so forth. The matrices a,, and a;f, of the dual
theory connect these components of ¢ with one another.

Perhaps the model theory of a gluon field can be replaced by a field theory version of
a dual resonance model; the properties of operators, including ©,,, would be abstracted
from the new model instead of the old one. With & # 0, a term ¢ would naturally appear
that violates scale invariance and is not related to the bare quark masses. (Probably ls =0
here rather than —2 as in the case of a gluon mass.) The gauge derivative in the other
portion of ©,,, referring to the quarks, would then involve a special linear combination
of the ®,,(R) instead of the gluon potential B,(R).

An amusing point is that in the limit of a dual resonance theory as o’ — 0 (so that the
trajectories become flat), with attention concentrated on the value o = 1, if the mathe-
matics of a Lie group is built into the model, then the mass shell predictions become those
of the corresponding massless Yang-Mills theory!”. That suggests that one might even
try a dual resonance model as a replacement of a color octet Yang-Mills gluon model,
with abstraction of the properties of color singlet operators.

We are not at all sure that what we are discussing here is a practical scheme, and if it is,
we do not know how the resulting algebraic system differs from that of gluons. We put it
forward merely in order to stimulate thinking about whether or not here are candidates
for the algebra, the representation, and the form of @, other than those suggested by
the gluon model.

Our attempt to use the dual model to construct a field theory has no bearing on whether
the mass-shell dual model can lead to a complete S—matrix theory of hadrons; our sug-
gestion resembles the use of limits of dual theories to obtain unified theories of weak and
electromagnetic interactions or the theory of gravity.

One interesting speculation that is independent of what model we use for the stuff to
which quarks are coupled is that perhaps when we perform the mathematical transforma-
tion from current quarks to constituent quarks and obtain the crude naive quark model
of meson and baryon spectra and couplings, the gluons or whatever they are will also be
approximately transformed into fictitious constituents, so that meson states would ap-
pear that act as if they were made of gluons rather than ¢g pairs. If there are indeed ten
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low-lying scalar mesons rather than nine, then we might interpret the tenth one (roughly
speaking, the £° meson) as the beginning of such a sequence of extra Su; singlet meson
states. (A related question, much debated by specialists in the usual, mass-shell dual
models, is whether the infinite sequence of meson and baryon Regge trajectories, all ris-
ing indefinitely and straight and parallel in zeroth approximation, should be extended to
exotic channels, i. e., those with quantum numbers characteristic of ggqqq, 9399 etc.).
Let us end by emphasizing our main point, that it may well be possible to construct an
explicit theory of hadrons, based on quarks and some kind of glue, treated as fictitious,
but with enough physical properties abstracted and applied to real hadrons to constitute
a complete theory. Since the entities we start with are fictitious, there is no need for any
conflict with the bootstrap or conventional dual model point of view.

Murray Gell-Mann Downloaded from www.worldscientific.com
by WSPC on 06/06/17, For personal use only,
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APPENDIX - BILOCAL FORM FACTOR ALGEBRA

We have described in Section III and IV a Lie algebra of good components of bilocal
operators on a null plane. The generators are 36 functions of z_,y_ and z, = y,, namely
Fiss Fiy, Tity, and Tjp,. We define R = 1/2(z +y) and z = z—y; then we have functions
of Ry,R_, and z_.

With z_ set equal to zero, we have just the usual good local operators on the null plane,
related to the corresponding good local operators at equal times with P; — co. We recall
that in the early work using P; — oo the most useful applications (fixed virtual mass
sum rules) involved matrix elements with no change of longitudinal momentum, i. e,
transverse Fourier components of the operators. Dashen and Gell-Mann!!) studied these
operators and found that between finite mass states their matrix elements do not depend
separately on the transverse momenta of the initial and final states, but only on the dif-
ference, which is the Fourier variable k,. Thus they obtained a “form factor algebra”
generated by operators F (ki) and F? (k.), to which, of course, one may adjoin Ty (k 1)
and Ty (k1 ).

We may consider the analogous quantities using the null plane method and generating to
bilocals:

F,-(kl,z_) =

f d*RS (Ry) Fiy (R,2-) exp iky [Ri+ PI' (A + J2)| exp iky [Ry + P7* (Ag = )]
(25)
and so forth. Here the integration over R_ assures us that P, = Fp+ P; is conserved by
the operator. (We note that Minkowski'? and others have studied the interesting problem
of extracting useful sum rules from operators unintegrated over R_, but we do not discuss
that here.) The quantities P7! (A, + Jz) and P (A, — Ji) act like negatives of center—
of-mass coordinates, —R; and — Ry, since on the null plane z, = 0 we have A + J, =
— [R©,,d*R6(R,) and A, + Jy = — [ Rp©. d'Ré (R ), while Py = [0, d'R(R,).
Our bilocal form factor algebra has the commutation rules

(B (kvz) By (KL 2)) = funi (ko + K 2o+ 22), (26)

etc., where the structure constants in general are those of [Ug],. Putting 2. = 2" =0,
we obtain exactly the form factor algebra of Dashen and Gell-Mann. If we specialize
further to k. = A, = 0, we obtain the algebra [Us], o, curremss Of vector, axial vector,
and tensor charges. It is not, of course, identical to the approximate symmetry algebra
{Uslw,co o for baryon and meson spectra and vertices, but is related to it by a trans-
formation, probably unitary. That is the transformation which we have described crudely
as connecting current quarks and constituent quarks.

The behavior of the operators F; (k. ), etc., with respect to angular momentum in the
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s-channel is complicated and spectrum-dependent; it was described by Dashen and Gell-
Mann in their angular condition!®. There is a similar angular condition for the bilocal
generalizations F; (ki , z_), etc.

The behavior of F} (k,,z_) and the other bilocals with respect to angular momentum in
the cross—channel is, in contrast, extremely simple. If we expand F; (ky, z-) or F3(ky,2-)
in powers of z_, each power z" corresponds to a single angular momentum, namely
J=n+1

As we expand F; (k. ,z.), etc., in power series in z_, we note that each term, in z_
has a pole in k2 at k2 + M? = 0, where M is the mass of any meson of spin J. By an
extension of the Regge procedure, we can keep k2 fixed and let the angular momentum

vary by looking at the asymptotic behavior of matrix elements of Fi (ky.,z_), etc., at large
-1

J=1
]

z_. A Regge pole in the cross channel gives a contribution zf(—ki}ﬁ (k%) [sin 7o (—k2))
and a cut gives a corresponding integral over a. Thus the bilocal form factor Fi(ky,z-)
couples to each Reggeon in the non-exotic meson system in the same way that F; (ki)
couples to each vector meson. The contribution of each Regge pole to the asymptotic
matrix element of F, (k. ,z_) between hadron states A and B is given by the coupling of
F; (ky,z_) to that Reggeon multiplied by the strong coupling constant of the Reggeon to
Aand B.

It would be nice to substitute the Regge asymptotic behavior of F; (ky,z_) etc., into the
commutation rules and obtain algebraic relations among the Regge residues. Unfortu-
nately, the asymptotic limit is not approached uniformly in the different matrix elements,
and the asymptotic Regge formulae cannot, therefore, be used for the operators every-
where in the equations (A.2); only partial results can be extracted.
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It is pointed out that there are several advantages in abstracting properties of hadrons and their currents from a
Yang-Mills gauge model based on colored quarks and color octet gluons.

In the discussion of hadrons, and especially of their
electromagnetic and weak currents, a great deal of use
has been made of a Lagrangian field theory model in
which quark fields are coupled symmetrically to a neu-
tral vector “gluon” field. Properties of the model are
abstracted and assumed to be true for the real hadron
system. In the last few years, theorists have abstracted
not only properties true to each order of the coupling
constant (such as the charge algebra SU; X SUj and
the manner in which its conservation is violated) but
also properties that would be true to each order only
if there were an effective cutoff in transverse momen-
tum (for example, Bjorken scaling, V-A light cone al-
gebra, extended V-A-S-T-P light cone algebra with fi-
nite quark bare masses, etc.).

We suppose that the hadron system can be described
by a theory that resembles such a Lagrangian model. If
we accept the stronger abstractions like exact asymp-
totic Bjorken scaling, we may have to assume that the
propagation of gluons is somehow modified at high
frequencies to give the transverse momentum cutoff.
Likewise a modification at low frequencies may be
necessary so as to confine the quarks and antiquarks
permanently inside the hadrons.

The resulting picture could be equivalent to that
emerging from the bootstrap-duality approach (in
which quarks and gluons are not mentioned initially),
provided the baryons and mesons then turn out to

* Work supported in part by the U.S. Atomic Energy Com-
mission. Prepared under Contract AT(11-1}-68 for the San
Francisco Operations Office, US. Atomic Energy Commis-
sion. Work supported in part by a grant from the Alfred P.
Sloan Foundation.

* On leave from Max-Planck-Institut fiir Physik und Astro-
physik, Miinchen, Germany.

** On leave from Institute for Theoretical Physics, Bern,
Switzerland.

behave as if they were composed of quarks and
gluons,

We assume here the validity of quark statistics
(equivalent to para-Fermi statistics of rank three, but
with restriction of baryons to fermions and mesons
to bosons). The quarks come in three *“‘colors”, but
all physical states and interactions are supposed to be
singlets with respect to the SU; of color. Thus, we do
not accept theories in which quarks are real, observ-
able particles; nor do we allow any scheme in which
the color non-singlet degrees of freedom can be ex-
cited. Color is a perfect symmetry. (We should men-
tion that even if there is a fourth “charmed” quark u’
in addition to the usual u, d, and s, there are still three
colors and the principal conclusions set forth here are
unaffected.)

For a long time, the quark-gluon field theory mod-
el used for abstraction was the one with the Lagrangian
density

L=~ [a (@ —i8BaAs) + Mg + Lp. m

Here M is the diagonal mechanical mass matrix of the
quarks and Lg is the Lagrangian density of the free
neutral vector field B,,, which is a color singlet. Re-
cently, it has been suggested [1] that a different mod-
el be used, in which the neutral vector field B4, is a
color octet (4 =1 ... 8) and we have

L= _‘i[Tu{au _igBAc! xA)+ M]q
+ Lg (Yang—Mills), (2)
where x4 is the color SUy analog A;. In this commu-
nication we discuss the advantages of abstracting prop-
erties of hadrons from (2) rather than (1).
We remember, of course, that the real description

of hadrons may involve a mysterious alteration of Lg
to Lg orof Lg(Y-M) to Lg(Y-M), where the new

365
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Lagrangian has the needed properties at high and low
frequencies to give scaling and confinement respective-
ly. No convincing example of such a situation has ever
been given. In ref. (1], it was suggested the required
new gluon propagation might be supplied in a model
where B, appears as one mode of a quantized string
in a multilocal field theory version of a dual picture
for the glue. (The mass-shell version of such a dual
scheme, for particles treated as real, is known to re-
duce to a Yang—Mills theory as the slope parameter
o for Regge trajectories tends toward zero.) Another
suggestion [2] is that somehow the free gluon propa-
gator contains, instead of the factor 1/g2, a factor
ng’q“, where p is some mass. All such suggestions are,
for the moment, mere speculations.

It may be, of course, that there is no modification
at high frequencies, in which case we would probably
not have exact asymptotic Bjorken scaling. Also, mod-
ification at low frequencies may not be necessary for
confinement.

A modified theory would clearly have an operator
term & in the energy density that violates scale invari-
ance but not SU5 X SU,, while the unmodified one
would either lack & or generate it spontaneously. A
theory with & = 0 would have a massless scalar dilaton
as M—0.

The simplest and most obvious advantage of (2)
over (1) is that the gluons are now just as fictitious as
the quarks. The color octet gluon field B, does not
communicate with any physical channel, since the
physical states are all color singlets; in contrast, the
color singlet gluon field B, would have the same quan-
tum numbers as the baryon current, the ¢ meson, and
so forth. Since in (2) the gluon is unphysical, we have
no objection to the occurrence of long-range forces in
its fictitious channel, produced either by massless
gluons in the unmodified version or by the noncanon-
ical glue propagation in the modified version. These
fictitious long-range forces and the associated infrared
divergencies could provide a mechanism for confining
all color nonsinglets permanently. They would not be
present in physical hadronic interactions, where long-
range forces are know to be absent.

The second advantage is that we can seein (2)a
hint as to why Nature selects color singlets. Looking
at the crudest nonrelativistic, weak-coupling approxi-
mation to (2), we find a potential
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where the ;4 are the color octet SU; charges of the
various quarks, antiquarks, and gluons. Then it is easy
to envisage a situation in which the only states with
deep attraction would be the color singlets. (We sup-
pose that in the true theory the other states become
completely unphysical.)

Recently, this point has been given publicity by
Lipkin [3], who treats, however, a Han—Nambu pic-
ture in which color nonsinglets can be physically ex-
cited by electromagnetism and in which there are three
triplets of real quarks with integral charges that aver-
age to 2/3,—1/3, and —1/3. We have rejected such a
picture, In fact, a serious argument against it is the
clash between the color octet Yang—Mills gauge on
the one hand and the electromagnetic gauge or the
Yang—Mills gauge of unified weak and electromagnet-
ic interactions on the other. Since, in our work, the
weak and electromagnetic currents form color singlets,
we encounter no such difficulty.

A third and very important advantage of the color
octet gluon scheme has been pointed out by L.B.
Okun in a private communication to H. Pagels. Okun’s
point is that in (1) there is no distinction between or-
dinary SUy and the SUy of color in the limit m,, =
my = mg, and thus we would have the symmetry of
SUg (or of SUg for m,, = my) where these groups
combine color SU; and ordinary SUj;. No evidence
of such extended symmetries exists. In (2), of course,
these annoying symmetries are not present.

A fourth apparent advantage of the color octet
gluon scheme has recently been demonstrated (4]
using the asymptotic perturbation theory method of
Gell-Mann and Low. Assuming that the method is
valid (sum of asymptotic forms of orders of perturba-
tion theory equaling asymptotic form of sum), one
can have a situation in which the bare coupling con-
stant is zero, there are no anomalous dimensions for
color singlet quantities, and the behavior of light cone
commutators comes closer to scaling behavior than in
the color singlet vector gluon case (1). However, actual
Bjorken scaling does not occur; instead, each moment
[F,(E)£" dE of the Bjorken scaling function appears
multiplied, in the Bjorken limit, by a distinct power
(In qz}pﬂ, where —q 2 is the virtual photon mass squared.
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That sort of violation of Bjorken scaling is not contra-
dicted by present experiments. Furthermore, many
sum rules and symmetry principles of light cone cur-
rent algebra would be preserved.

For us, the result that the color octet field theory
model comes closer to asymptotic scaling than the
color singlet model is interesting, but not necessarily
conclusive, since we conjecture that there may be a
modification at high frequencies that produces true
asymptotic scaling.

There is one more advantage of the color octet
gluon scheme over the color singlet scheme, and it is
the main point we wish to stress in this communica-
tion. In either scheme, there is an anomalous diver-
gence of the axial vector baryon current F5,. While,
for the other eigth axial vector currents Fz, (i=1...8),
we have simply
3, F2 )= D0x, x, ivs 3N, M), 3
the divergence equation for F3g is [5]

3 Fia = DGz, x, /5 Mys) + VB2 (87216, Gy,

(C3]
where D(x, y, G) is the physical operator that corre-
sponds in a free quark model to §(x)Gq(y), and G, =
9,8, —0,B, for the color singlet case, while G, =
3, B4, — 8,84, *&Lapc B, Be, for the color octet
case.

Here the extra term in (4) arises from a several-
gluon effect in the strong interaction analogous to the
two-photon effect in the familiar electromagnetic tri-
angle anomaly [6], which contributes a term
e2(16m2)"L F,, F,5, to the divergence of F3.

It was shown [6] that in renormalizable gluon mod-
els the anomalous divergence arises essentially from
the lowest order triangle diagram.

Wilson has demonstrated [7] that the anomaly is
the consequence of a singularity in coordinate space.
In field theory models this singularity comes from low
order quark loop diagrams, since higher order correc-
tions are less singular and do not contribute. There-
fore, in a theory in which the gluon propagation is less
singular at small distances than in the canonical one,
the anomaly coefficient will be unchanged, since the
quark propagation is left canonical.

In the color singlet gluon picture, the anomalous
divergence term in (4) is necessarily associated [5]
with an anomalous singularity in the bilocal current

PHYSICS LETTERS
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Fio(x,¥)asz2 = (x — y)? tends to zero:

Fl]g-(x »)= 31(2“2)- g6, 353(22) ! (5)

The existence of such a term, while not contradicted
by experiment so far, would destroy the light cone al-
gebra as a system since one of the bilocal currents
arising from commutation of two physical currents
would be infinite on the light cone. In any case, we
have assumed that the full light cone algebra is correct
or at most violated by powers of logarithms, and we
therefore cannot tolerate the term (5).

In ref. 5], this situation was posed as a puzzle:
how to get rid of the anomalous singularity in
Fnu(x, »), whllc retaining the anomalous divergence
term for 8, Fna(x} given by triangle diagram.

The color octet gluon scheme solves the puzzle.
The anomalous divergence term in B Fga (x) is un-
changed, except for replacing G, G, by G, G,
but it is no'w associated with a singularity asz2 = 0
not in Faa(x »), but in a different formal quantity,
the correspandmg color octet operator, which we may

call FUAﬂ{x,y)
FM,(X')’)=3 i(272) 1 gGlapzp(z?) ). (6)

Since Fg Aa (%, ¥) is not a physical operator, being a
color octet, we can have no objection to its being
singular on the light cone.

To summarize, then, the fifth advantage of the
color octet gluon scheme is that we get rid of the un-
acceptable anomalous singularity (5) in Fgﬂ (x,»).

Now we can believe and make use of the anoma-
lous divergence term in (4). This term looks as if it
could be very useful in connection with the PCAC
idea. Let us assume that the strong form of PCAC is
correct [8]. Formally, we mean by this that as the
bare quark masses tend to zero and the generators of
SU; X SUjy become conserved, the conservation oc-
curs according to the Nambu—Goldstone pattern,
with eight massless pseudoscalar mesons. Physically,
we mean that the real world of hadrons is not terribly
far from such a situation, and not far at all from a sit-
uation with SU, X SU; conserved and three massless
pions. The bare quark masses are such thatm, ~
my < m, and the ratios M2: MK M are nutvery
dlfferent from 0:1:4/3.

It has always been a great mystery why, if we ab-
stract relations from a field theory model like (1) or
(2), we do not have in the limit M = 0 the conservation

367
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of nine axial vector currents and the existence of nine
massless pseudoscalar mesons. Turning on the quark
bare masses, with m,, = my < m,, we would have four
nearly massless pseudoscalar mesons instead of three,
in bad disagreement with observation. To put in an-
other way, as m, and m tend to zero, we would have
U, X U, conservation and four massless pseudoscalar
mesons.

The mystery might appear to be resolved, since the
anomalous term in (4) breaks the conservation of F“;‘a
even in the limit M = 0 and so in that limit it looks as
if there need not be a ninth massless pseudoscalar me-
son*, and in the limit m, - 0, my— 0 it looks as if
there need not be a fourht one.

Unfortunately, the extra term in (4) is itself a diver-
gence of another (non-gauge invariant) pseudovector,
and thus as M — 0 we still have the conservation of a

* In ref. | 5], the authors, appalled at the ancmalous singularity
that accompanied the anomalous divergence in the color sin-
glet gluon case, discussed the possibility of somehow getting
rid of the anomalous divergence and finding a different ex-
planation of the absence of a ninth pseudoscalar meson as
M= 0. The alternative explanation tentatively offered was
that 35, cummuting with SUjz x SUsj, could vanish in the
limit M— 0 when applied to “'single particle states” instead
of giving either parity doubling or a ninth massless pseudo-
scalar meson. However, using the full group (SUg)w currents
of the light-like vector, axial vector, and tensor charges, we
wee that Fé fails to commute with the tensor charges Ty
and Ty, and all matrix elements of those charges would
have to vanish between “single particle states”. The same
is true of the modified /5 that includes the effect of the
anomalous divergence. It seems unlikely that all “single
particle” matrix elements of Tz and Ty vanis as M= o.
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modified axial vector baryon charge; we must still ex-
plain why this new ninth charge seems to correspond
neither to a parity degeneracy of levels nor to a mass-
less Nambu~—Goldstone boson as M — 0.

It is important to find the explanation *. Assum-
ing that strong PCAC does not fail, we conjecture
that the question is closely related to the question
of whether there are modifications of Yang—Mills
gluon propagation and, if so, what is the nature of
those modifications.

Two of us (H.F. and M.G-M.) would like to thank
S. Adler, W.A. Bardeen, R. Crewther, H. Pagels and
A. Zee for useful conversations and the Aspen Center
for Physics for making those conversations possible.
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In these lectures I want to speak about at least
two interpretations of the concept of quarks for hadrons
and the possible relations between them.

First I want to talk about gquarks as "constituent
quarks". These were used especially by G. Zweig (1964)
who referred to them as aces. One has a sort of a simple
model by which one gets elementary results about the low-
lying bound and resonant states of mesons and baryons,
and certain crude symmetry properties of these states,
by saying that the hadrons act as if they were made up
of subunits, the constituent guarks g. These quarks are
arranged in an isotopic spin doublet u, d and an isotopic
spin singlet s, which has the same charge as d and acts
as if it had a slightly higher mass.

"Lecture given at XI. Internationale Universitdtswochen
fir Kernphysik, Schladming, February 21 - March 4, 1972.

+ .
On leave from CALTECH, Pasadena. John Simon Guggenheim
Memorial Fellow.
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The antiquarks g of course, have the opposite behaviour.
The low-lying bound and resonant states of barycns act
like ggg and those of the mesons like gq. Other con-
figurations, e.qg., qiq&, qqqq&, etc., are called exotic,
but they certainly exist in the continuum and may have
resonances corresponding to them.

In this way one builds up the low-lying meson and
baryon states and it is frequently useful to classify
them in terms of an extremely crude symmetry group
UﬁxUGxoa, where one U6 is for the quarks (three states of
charge and two spin states) and one for the antiquarks,
whereas 0, represents a sort of angular momentum between
them. This symmetry is however badly violated in the lack
of degeneracy of the spectrum. The mesons then have as

the lowest representation
(6, 6), L" =0
which gives the pseudoscalar and vector mesons, nine of

each, just the ones which have been observed. (L=0 wculd

normally have parity plus, but since we have a g and a q
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the intrinsic parity is minus.) The next pattern would be
(6, 6), L' =1

and this gives us the tensor mesons, axial vector mesons,
another kind of axial vecter mesons with opposite charge
conjugaticn, and scalar mesons. All of these kinds have
been seen, although not yet guite nine in every case.
Then one can go up with L=2,3,... where there is just
scattered experimental information. But whatever ex-
perimental information exists is at least compatible
with this trivial picture. As is well known this group
is not very well conserved in the spectrum and the states
are badly split, e.qg., m“=l40 MeV and mn.=960 MeV.

For the baryons the lowest configuration is assigned
to

(6, 1), L =0

that is three guarks in a totally symmetric state of spin,
isospin, etc., without antiquarks; the parity is plus by
definiticn. This gives the baryon octet with spin L and

2
just above it the decimet with spin 2, which agree with

2!
the lowest-lying and best-known states of the baryons.
The next thing one expects would be an excitation of one
unit of angular momentum which changes the symmetry tec the

mixed symmetry under permutations:
(70, 1), L =1
and that seems to be a reasconable description of the low

lying states of reversed parity. If one goes on to higher

configurations things become more uncertain both ex-
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perimentally and theoretically; presumably
(56, 1), L° =2

exists and contains the Regge excitations of the corres-
ponding ground state, likewise

(70, 1), 1P = 37 and sc on.

In deing this we have to assume something peculiar
about the statistics obeyed by these particles, if we
want the model to be simple. One expects the ground state
to be totally symmetric in space. If the quarks obeyed the
usual Fermi-Dirac statistics for spin % particles, then
there would be an over-all antisymmetry and cne would ob-
tain a totally antisymmetric wave function in spin, iso-
spin and strangeness, whereas (56, 1) is the totally sym-
people have assumed therefore from the beginning (1963) is
that the quarks obey some unusual kind of statistiecs in
which every set of three has to be symmetrized but all
other bonds have to be made antisymmetric, so that, e.g.,
two baryons are antisymmetric with respect to each other.
One version of this came up under the name of para-
statistics, precisely "para-Fermi statistics of rank three",
which gives a generalization of the result I just des-
criked. T will discuss it in a slightly different way,
which is equivalent to para-Fermi statistics of rank three
with the restricticn that physical baryon states are all
fermions and physical meson states are all bosons.

We take three different kinds of quarks, that is
nine altogether, and call the new variable distinguishing
the sets "color", for exarple red, white and blue (R-W-B).
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The nine kinds of guarks are then individually Fermi-

and_meson_states _be_singlets_under the SU, of "color!.

This means that for the meson gq configuration we row have
dpdg *+ 9,9y * 9pdp

and for a baryon gqg we have

Ag9y9p ~ 9w9g9p T 9p9R%y ~ 9g9pdy * 9y9g9gr ~ 9g9y9g -

which is totally antisymmetric in color and permits the
baryon tc be totally symmetric in the other variables
space, spin, isospin and strangeness. This restriction to
color singlet states for real physical situations gives
back exactly the sort of statistics we want.

Now if this restriction is applied to all real
baryons and mesons, then the gquarks presumably cannot be
real particles. Nowhere have I said up to now that quarks
have to be real particles. There might be real quarks,
but nowhere in the theoretical ideas that we are going
to discuss is there any insistence that they be real. The
whole idea is that hadrons act as if they are made up of
guarks, but the gquarks do not have to be real.

If we use the quark statistics described above, we
see that it would be hard to make the guarks real, since
the singlet restriction is not one that can be easily
applied to real underlying objects; it is not one that
factors: a singlet can be made up of two octets and these
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can be removed very far from each other such that the
system over-all still is a singlet, but then we see the
two pieces as octets because of the factoring property

of the S matrix. If we adopt this point of view we are
then faced with two alternatives: one is that there are
three gquarks, fictitious and obeying funny statistics;
the other is that there are actually three triplets of
real quarks, which is possible but unpleasant. In the
latter case we would replace the singlet restriction with
the assumption that the low lying states are singlets and
one has to pay a large price in energy to get the colored
SU,
view, at least for these lectures.

excited. I would prefer to adopt the first point of

Various crude symmetries and other related methods
have been applied to these constituent quarks. First of
all there is the famous subgroup of the classifying
UGXUGan, namely [UGIWXIoz]w which is applied to processes
involving only one direction in space, like a vertex or
forward and backward scattering (in general, collinear
processes) . [02]w has the generator Lz (assuming z is the

chosen direction) and [US]w consists of the generators

1
S(Ta, + JaY),
2 it 3 ]

1 1 1
(505, * lecjz"
3 j

l " 1
U055 = Iriody)
A j
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where the sum over i extends over the constituent guarks
and the primed sum over j extends over the constituent
antiquarks; we have 36 operations. There is a very crude
symmetry of collinear processes under this group.

Another thing that has been done is to draw simple
diagrams following guark lines through the vertices and
the scattering. These have been recently used by Harari
and Rosner, who called them "twig" diagrams after Zweig,
who introduced them in 1964.

The twig diagram, e.g., for a meson-meson-meson

Y
\(

is forbidden by "Zweig's rule". This rule then leads to

But another form

important experimental results, especially that the ¢
cannot decay appreciably into a p and n (¢#p+n), since

the ¢ is composed of strange and antistrange guarks whereas
p and m have only ordinary up and down gquarks, and, there-
fore, the decay could take place only via the forbidden

diagram. Similarly, we have the baryon-baryon-meson vertex
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T

One can extend this concept to scattering processes and
get a graphical picture of the so-called duality approach
to scattering, e.g., for meson-meson scattering one can

introduce the following diagram:
\_E__/
I
1

L

7 1\

If we cut the diagram in the s and t channels we get gg in
both cases: therefore, in meson-meson scattering we have
ordinary non-exotic mesons in the intermediate states and
exchange non-exotic mesons. We run into something of a
trap, though, if we try to apply this to baryon-antibaryon
scattering, because then we have a situation like

.
—

f

t —




146

H. Fritzsch

741

where the intermediate state is q&qi, which includes exotic
configurations. In order to interpret this inconsistency
different people have done different things.

The diagrams have been used in two different ways:
one involves saying what the diagram means mathematically,
and the other one involves not saying what it means mathe-
matically. This is possible since here we do not have a
priori a definite mathematical rule for computing the dia-
gram, in contrast to a Feynman diagram for which a specific
integral always exists. But we can obtain some results by
never giving such a rule, only by noticing that we have
zero when there is no diagram. Those so-called "null-
relations" have been used by Schmid, by Harari and Rosner,
by Zweig, Weyers and Mandula and by others for estab-
lishing a number of extremely useful sum rules. They give
a correspondence between lack of resonances in the s
channel, in places where the resocnances would have to be
exotic, and exchange degeneracy in the t channel. Exchange
degeneracy is a noticeable feature of low energy hadron
physics and a number of cases of agreement with experi-
ments have been obtained.

All I want to say about the null-relation approach
is that from the point of view of constituent quarks we
are dealing here with a non-exotic approximation, because
we are leaving out exotic exchanges, and that cannot be
expected to be completely right. The simple null-equation
duality approach is just another feature of the same kind
of approximation we were talking about before, i.e., the
classification under U6x06x03 and the rough symmetry of
collinear processes under iUG]wx[OZ]w, and when it fails
that resembles a failure of such an approximation.

Another school of people consists of those who do
the Veneziano duality kind of work and actually attempt
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to assign mathematical meaning to these diagrams. They go
very far and construct almost complete theories of hadron
scattering by means of extending these simple diagrams to
ones with any number of quark pairs, but they run into
trouble with negative probabilities or negative mass
squares and the difficulty of introducing guark spin. There
are also some difficulties with high energy diffraction
scattering, etc. So that approach is not yet fully success-
ful, while the much more modest null-relation approach has
borne some fruit. However, if they overcome their diffi-
culties, the members of the other school will have pro-
duced a full-blown hadron theory and advanced physics by

a huge step.

There is a second use of quarks, as so-called "cur-
rent quarks", which is quite different from their use as
constituent guarks; we have to distinguish carefully bet-
ween the two types.in order to think about gquarks in a
reasonable manner. Unfortunately many authors including,

I regret to say, me, have in past years written things
that tended to confuse the two. In the following dis-
cussion of current quarks we attempt to write down
properties that may be exact, at least to all orders in
the strong interaction, with the weak, electromagnetic and
gravitational interactions treated as perturbations. (It
is necessary always to include gravity because the first
order coupling to gravity is the stress-energy-momentum
tensor and the integral over this tensor gives us the
energy and momentum which we have to work with.)

When I say we attempt exact statements I do not mean
that they are automatically true - there is also the in-
cidental matter that they have to be confirmed by ex-
periment, but the statements have a chance to be exact.
Such statements which are supposed to be exact at least in



148 H. Fritzsch

743

certain limits or in certain well-defined approximations,
or even generally exact, are to be contrasted with state-
ments which are made in an ill-defined approximation or a
special model whose domain of wvalidity is not clearly spec-
ified. One frequently sees allegedly exact statements mixed
up with these vague model statements and when experiments
confirm or fail to confirm them it does not mean anything.
Of course, we all have to work occasionally with these
vague models because they give us some insight into the
problem but we should carefully distinguish highly model-
dependent statements from statements that have the possibil-
ity of being true either exactly or in a well defined limit.
The use of current quarks now is the following:we say
that currents act as if they were bilinear forms in a rela-
tivistic guark field.We introduce a quark field,presumably
one for the red,white and blue gquarks and then we have for
the vector currents in weak and electromagnetic interaction
A ) o A
Py, 13g v, 3 9z + 13 v, 5 9y + 195 v, 7 9
[} M u W
The symbol ~ means the vector current "acts like" this bi-
linear combination. Likewise the axial vector current acts

like A N N

5 5 . iq . 5 de:
Fio “ 19 ¥,¥s 3 Qg + 19y v, ¥5 5 Iy *+ 195 v,Y5 5 9

The reason why I want all these colors at this stage is that
I would like to carry over the funny statistics for the cur-
rent guarks, and eventually would like to suggest a trans-
formation which takes one into the other, conserving the
statistics but changing a lot of other things. An important
feature of this discussion will be the following: is there
any evidence for the current gquarks that they obey the funny
statistics? the answer is yes, and the evidence depends on a
theoretical result due to many people but principally S.Adler.

Acta Physica Austriaca, Suppl. IX 48
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The result is that in the PCAC limit one can compute
exactly the decay rate of n°+2y. The basis on which Adler
derived it was a relativistic renormalized guark-gluon
field theory treated in renormalized perturbation theory
order by order, and there the lowest order triangle dia-
gram gives the only surviving result in the PCAC limit:

5
B

E, E

Here Fe are the electromagnetic currents, Fg the third
component of the axial current that is converted into a

° through PCAC. We reject this derivation because order
by order evaluation of a renormalizable gquark-gluon field
theory does not lead to scaling in the deep inelastic
limit. Experiments at SLAC up to the present time are in-
capable of proving or disproving such a thing as scaling
in the Bjorken limit but they are certainly suggestive and
we would like to accept the Bjorken scaling. So we must re-
ject the basis of Adler's derivation but we can derive
this result in other ways, consistent with scaling, as I
shall describe briefly later on.

What is sometimes said about Adler's computation is
that this result completely contradicts the gquark model.
What is true is that it completely contradicts a hypothe-
tical quark model that practically nobody wants, with
Fermi-Dirac statistics. It agrees beautifully on the other
hand with the ancient model that nobody would conceivably
believe today in which things are made up of neutrons and
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protons. If you take basic neutrons and protons you get
for an over-all coefficient of that diagram the following:
we have charges squared multiplied by the third component
of I, which means +1 for up isotopic spin and -1 down iso-
topic spin, so for protons and neutrons as basic con-

stituents we get
(p, n): +1(1)%2 -1(0)2 =1

and with this Adler obtained exactly (within experimental
errors) the right experimental decay rate for 7° and even
the right sign for the decay amplitude. If we take guarks
u, d, s we get (u, d, s): +1(2/3)2-1(-1/3)2=1/3. So we

obtain a decay rate which is wrong by a factor of 9. How-
ever, if we have the funny statistics - say in the easiest
way with the red, white and blue color - we should put in

Ups dpr sp
uer Ay 8y : 3[+1(2/3)2-1(-1/3)2] =1 ,
ugr dg, sy

remembering that the current is a singlet in R-W-B, but

in the summation we obtain a loop for each color. So we
get back the correct result. Thus, there is this, in my
mind, very convincing piece of evidence from the current
quarks too for the funny statistics such as the constituent
guarks seem to obey. The transformation between them should
preserve statistics and so the picture seems to be a con-
sistent one.
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The relation "acts like" (~) which we used to define
the current quarks can be strengthened as we introduce
more and more properties of the currents which are sup-
posed to be like the properties of these expressions. In
other words there will be a hierarchy of strength of ab-
straction from such a field theory to the properties that
we suggest are the exact characteristics of the vector and
axial vector currents. We have to be very careful then to
abstract as much as we can so as to learn as much as we
can from the current guark picture, but not to abstract
too much, otherwise first of all experiments may prove us
wrong, and secondly that it may involve us with the
existence of actual quarks, maybe even free quarks - and
that, of course, would be a disaster.

If quarks are only fictitious there are certain
defects and virtues. The main defect would be that we will
never experimentally discover real ones and thus will never
have a guarkonics industry. The virtue is that then there
are no basic constituents for hadrons - hadrons act as if
they were made up of quarks but no quarks exist - and,
therefore, there is no reason for a distinction between the
quark and bootstrap picture: they can be just two dif-
ferent descriptions of the same system, like wave mechanics
and matrix mechanics. In one case you talk about the boot-
strap and when you solve the equations you get something
that looks like a quark picture; in the other case you
start out with quarks and discover that the dynamics is
given by bootstrap dynamics. An important question about
the bootstrap approach is whether the bootstrap gives
everything or whether there are some symmetry considerations
to be supplied aside from the bootstrap. I do not know the
answer, but some people claim to have direct information

from heaven about it.
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Let us go back to the current quarks. Besides the
V and A currents we might have well defined tensor (T),
scalar (S) and pseudoscalar (P) currents, which would act
like

Pi f\;ia Ai "fsq .

I think these currents all can be physically defined: the
S and P currents would be related to the divergences of
the V and A currents and the tensor currents would arise
when you commute the currents with their divergences.

The first of the most elementary abstractions was

the introduction of the SU3XSU3 charges, that is

—
]
wn
(o]
o
w
"
I
m
w

with their equal time commutators. We do not have very good
direct evidence that this is true, but the best evidence
comes from the Adler-Weisberger relation which is in two

forms: first the pure one, namely just these commutators

5 ——
Fj] i fijk Fx

which give sum rules for neutrino reactions, and a second
form which involves the use of PCAC giving sum rules for
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pion reactions, and those have been verified. So an
optimist would say that the commutation relations are
okay and PCAC is okay; the pessimist might say that they
are both wrong but they compensate. That will be checked
relatively soon as neutrino experiments get sophisticated
enough to test the pure form. In the meantime I will
assume that the equal-time commutators (ETC) and PCAC are
okay. In order to get the Adler-Weisberger relation it is
necessary to apply the ETC of light-like charges for the
special kinematic condition of infinite momentum (in the
z direction). We make the additional assumption that bet-
ween finite mass states we can saturate the sum over inter-
mediate states by finite mass states. In the language of
dispersion theory this amounts to an assumption of un-
subtractedness; in the language of light-cone theory it
amounts to smoothness on the light cone. In this way
Adler and Weisberger derived their simple sum rule.

We are considering here the space integrals of the
time components of the V and A currents, but not those of
the x or y components at Pz=w. We are restricting our-
selves, in order to have saturation by finite mass inter-
mediate states, to "good" components of the currents, those
with finite matrix elements at P ==. These are FiO%Fiz and
FiO%F;z at P ==. The "pbad" componf?ts Fyyr Fiy' Fix' Fiy
have matrix elements going like P, at infinite Pz' The
componfgts F,,"F;, and ng—Fgo have matrix elements going
like Pz and are "terrible".

One generalization that we can make of the algebra

of SU3x8U3 charges is to introduce the tensor currents
Tiuv' In the case of the tensor currents the good compo-
nents are
4"
Tixo = Tixz
T u

; = T,
iyo iyz
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from which we construct the charges

"t " dax

ix ITixo

iy ITiyo a3x

at P == and adjoin them to Fi and FE. Thus we get a system
of 36 charges and that just gives us a [Us]w. One reason
why I introduced these tensor currents is that it is
simpler to work with [Uslw, which we have met before,
rather than with one of its subgroups SUBXSU3. These
charges then form generators of an algebra which we call

[U61w,m,currents

to be contrasted with

[UG]w,w.stronq

which had to do with the constituent quarks. The contrast

is between the [U which is essentially ap-

G]W,m,strong
proximate in its applications (collinear processes), and

the [U61w,m,currents
tation rules of the currents and having to do with current

drawn from presumably exact commu-

guarks. Although they are isomorphic they are not equal.
For those who cannot stand the idea of introducing
the tensor currents, we can just reduce both groups to
their subgroups SU,xSU5. In that case for [Uslw,m,currents
we are discussing only the vector and axial vector charges

and for [U.] only the so-called coplanar subgroup.

w,=,strong
Then we can make the same remark that these two are not

equal, they are mathematically similar but their matrix
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elements are totally different. So one of them is the
transform of the other in some sense.

The transformation between current and constituent
quarks is then phrased here in a way which does not in-
volve quarks; we discuss it as a transformation between
[UG]w,w,currents and [Uﬁ]w,m,strong (or their respective
subgroups) . What would happen if they were equal? We know
that for [UGJw,m,strong the low-lying baryon and meson
states belong approximately to simple irreducible re-
presentations 35, 1, 56, etc. If this were true also of

[U_] then we would have the following results:
6"'w,=,currents

[0]
=
Il
wiuwn

which we know is more like 5/3/2; the anomalous magnetic
moments of neutron and proton would be approximately zero,
while they are certainly far from zero, and so on.

Many authors have in fact investigated the mixing
under this group, and they found that there is an enormous
amount of mixing, e.g., the baryon is partly 56, LZ=O and
partly 70, Lz=il and the admixture is of the order of 50%.
There are higher configurations, too.

So these two algebras are not closely equal although
they have the same algebraic structure. And there is some
sort of a relation between them, which might be a unitary
one, but we cannot prove that since they do not cover a
complete set of quantum numbers. But we can certainly look
for a unitary transformation connecting the two algebras
and my student J. Melosh is pursuing that problem. He has
found this transformation for free guarks where it is

simple and leads to a conserved [UG] But, of

w,strong”
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course, we are not dealing with free quarks and have to
look at a more complicated situation. What I want to
emphasize is that here we have the definition of the
two algebras. In popular language we can refer to it as
a search for the transformation connecting constituent
quarks and current quarks.+

Let me mention here the work of another student of
mine, Ken Young, who has cleaned up this past year at
Caltech work that Dashen and I began about 7 years ago,
and which we continued sporadically ever since. That is
the attempt to represent the charges and also the trans-
verse Fourier components of the charge densities at in-
finite momentum completely with non-exotic states, so as
to make a non-exctic relativistic quark model as a re-
presentation of charge density algebra. We ran into all
kinds of troubles, particularly with the existence of
states with negative mass squares and the failure of the
operators of different quarks to commute with each other.
Young seems to have shown that these difficulties are a
property of trying to represent the charge_algebra at in-
finite momentum with non-exotics alone. Therefore, the
transformation which connects the two algebras does not
just mix up non-exotic states but also brings in higher
representations that contain exotics. In simple lay
language the transformation must bring in guark pair con-
tributions and the constituent guark looks then like a
current guark dressed up with current quark pairs.

We therefore must reject all the extensive literature,
which I am proud not to have contributed to over the last
few years, in which the constituent quarks are treated as
current quarks and the electromagnetic current is made to

interact through a simple current operator Feu with what

+Bucce11a, Kleinert and Savoy have suggested a simple pheno-
menological form of such a transformation.
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are essentially constituent quarks. That is certainly
wrong.

Another way of describing the infinite momentum and
the smoothness assumption is to perform an alibi instead
of an alias transformation, i.e., instead of letting
everything go by you at infinite momentum you leave it
alone at finite momentum and you run by it. These two are
practically equivalent. In that case one is not talking
about infinite momentum but about the behaviour in co-
ordinate space as we go to a light-like plane and about
the commutators of light-like charges which are integrated
over a light-like plane instead of an equal-time plane.
Leutwyler, Stern and a number of other people have
especially emphasized this approach. From that again one
can get the Adler-Weisberger relation, and so forth.

On the light-like plane (say 2z+t=0) we have the
commutation rules not only for the charges, but also for
the local densities of the good components of the currents,
namely Fio+Fiz and Fio+Fiz for Vv and A, with the possible
adjunction of the good components Tixo+Tix£ Tiy0+Tiyz
of the tensor currents. Especially useful is the algebra

and

of these quantities integrated over the variable z-t and
Fourier-transformed with respect to the variables x and y.
= § i >
We oEtain the operators Fi(kl), Fi(kl)' Tix(kl)' and
Tiy(kl) and they have commutation relations like
> —b. _ . &> +l
[Fi(kl), Fj(kl)] =i fijk Fk(k1+ki) .
By the way, if we take this equation to first order in
EL and ﬁi we get the so-called Cabibbo-Radicati sum rule
for photon-nucleon collisions, which seems to work quite

well.+

+Strictly, the operators F.(ﬁ ) are not exactly the Fourier
transforms of integrals f Current densities but rather
these Fourier transforms multiplied by

) -1
exp{ilk( Ax+JyJ +kY (Ay—Jx) ] [P0+Pz] Y,
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So far we have abstracted from quark field theory
relations that were true not only in a free guark field
model but also to all orders of strong interactions in a
field model with interactions, say through a neutral
"gluon" field coupled to the quarks. (We stick to a
vector "gluon" picture so that we can use the scalar and
pseudoscalar densities Si and Pi to describe the diver-
gences of the vector and axial vector currents respectively.)
We shall continue to make use of abstractions limited in
this way, since if we took all relations true in a free
quark model we would soon be in trouble: we would be
predicting free quarks! However, in what follows we consider
the abstraction of propositions true only formally in the
vector "gluon" model with interactions, not order by order
in renormalized perturbation theory. We do this in order
to get Bjorken scaling, which fails to each order of re-
normalized perturbation theory in a barely renormalizable
model like the quark-vector "gluon" model but which, as
mentioned before, we would like to assume true.

That leads us to light-cone current algebra, on which
I have worked together with Harald Fritzsch. It has been
studied by many other people as well, including Brandt and
Preparata, Leutwyler et al., Stern et al., Frishman, and,
of course, Wilson, who pioneered in this field although
he disagrees with what we do nowadays. Those whose work is
most similar to ours are Cornwall and Jackiw and
Llewellyn-Smith.

The first assumption in light-cone current algebra
is to abstract from free guark theory or from formal
vector "gluon" theory the leading singularity on the light
cone (x-y)2%0 of the connected part of the commutator of
two currents at space-time points x and y. For V and A

currents we find

where I is the Lorentz-boost operator, F is the total
angular momentum, and the component P +P, of the energy-
momEntum—four-vector is conserved by 811%the operators

F. (k).

. bl R
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K 5 fick
[Fi“(x), Fjv(y)] = [Fiu(x), Fgu(y)] pul

1
T a {e(x Ao '8 Yo ((x-y)2) H{ (4 f]_:Ik 13k) {swpCI kc(y,x) +

(y,x)) +

+ ie
uvpao kc

* fijk 1]k)( uvpa kc(x'y) =1 Euvpo kc(xry))} '

[F;, (x), F5 LN =

& 0, (e xymy ) sx-y) ) (L £ (y,x) +

ijk 1jk]( uvpao kc

LE uvpo kc(y'xl) +

+ L £ gty ) (8, B (xy) L e By (x,y)) )}

On the right-hand side we have the connected parts of
bilocal operators F) (x,y) and F5 (x,y) that reduce to the
local currents Fp (x) and F5 (x) as y+*x. The bilocal
operators are defined only in the vicinity of (x-y)Z2=0.
Here Suvpo=5upﬁvc+6vpGuo_ﬁuvépa‘

The formulae give Bjorken scaling by virtue of the
finite matrix elements assumed for F (x,y] and F (x,y),
in fact the Fourier transform of the matrix element of
ch{x,y) is just the Bjorken form factor. The fact that
all charged fields in the model have spin 1/2 determines
the algebraic structure of the formula and gives the
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prediction cL/cT gjo for deep inelastic electron scattering,
not in contradiction with experiment. The electrical and
weak charges of the quarks in the model determine the co-
efficients in this formula, and give rise to numerous sum
rules and inequalities for the SLAC-MIT experiments and

for corresponding neutrino and antineutrino experiments in
the Bjorken limit, none in contradiction with experiment,
although the inequality 1/4£Fen(£)/F6p(g)£4 appears to be
tested fairly severely at the lower end near £=1.

The formula for the leading light-cone singularity
in the commutator contains, of course, the physical in-
formation that near the light-cone we have full symmetry
with respect to SU3><SU3 and with respect to scale trans-
formations in co-ordinate space. Thus there is conservation
of dimension in the formula, with each current having
t==3 and the singular function of x-y also having (=-3.

A simple generalization of the abstraction we have
considered turns it into a closed system, called the basic
light-cone algebra. Here we commute the bilocal operators
as well, for instance Fiu(x,u) with Fju(y,v), as all the
six intervals among the four space-time points approach O,
so that all four points tend to lie on a light-like straight
line in Minkowski space. Abstraction from the model gives
us on the right-hand side a singular function of one co-
ordinate difference, say x-v, times a bilocal current
Fka or Fic at the other two points, say y and u, plus an
expression with (x,v) and (y,u) interchanged, and the
system closes algebraically. The formulae are just like
the ones for local currents.

We shall assume here the validity of the basic
lightcone algebraic system, and discuss possible appli-
cations and generalizations.
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First of all, we may consider what happens when the
points x and u lie on a light-like plane with one value
of z+t and y and v lie on another light-like plane with
a slightly different value of z+t, and we let these values
approach each other.

For commutators of good components of currents, the
limit is finite, and we get a generalization of the light-
plane algebra of commutators of good densities FiO+Fiz
and F20+Fiz. There is now a fourth argument in each
density, namely the internal co-ordinate n, which runs only
in the light-like direction z-t. As before, we get the most
useful results by integrating over the average z-t and
Fourier-transforming with respect to the transverse average
co-ordinates x and y, obtaining operators Fi(ﬁl, n) .,

Fg(il, n) , with commutation relations like
=+ —>' 1 _ &+ 4] ¥
[Fl(kl, ”)l Fj(klf n J] =1 fi]k Fk(kl -+ klr n+n')

Remember that El is in momentum space and n in (relative)
co-ordinate space.

The non-local operators Fi(i, n) acting on the vacuum
create strings of mesons with all values of the meson spin
angular momentum J. In fact, a power series expansion in n

of Fi(El' n) is just an expansion in nJ_l- At large n, we

can reggeize and obtain a dominant term in na{-ki)_l, where
c{—ki) is the leading Regge trajectory in the relevant
meson channel, for instance P or p. (In the work on these
questions, Fritzsch has played a particularly important
role.) The couplings of the Regge poles in the bilocals are
proportional to the hadronic couplings of meson Regge
poles.

If we commute bad components with bad caomponents as
the two light planes approach each other, then the leading
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singularity on the light-cone leads to a singular term
that goes like a é-function of the difference in co-
ordinates z+t. This singular term, which is multiplied

by a good compeonent of a bilocal current on the right-
hand side, gives the Bjorken scaling in deep inelastic
scattering. Unlike the good-good commutators on the light
plane, it involves a commutator of local quantities on

the left giving a bilocal on the right, a bilocal of which
the matrix elements give the Fourier transforms of the
Bjorken scaling functions F(g) .

We may now generalize, if we keep abstracting from
the vector gluon model, to a connected light-cone algebra
involving V, S, T, A and P densities, where the diver-
gences of the V and A currents are proportional to the S
and P currents respectively, with coefficients that cor-
respond in the model to the three bare guark masses, form-
ing a diagonal 3x3 matrix M. The divergences of the axial
vector currents, for example, are given by masses M

The scalar and pseudoscalar densities are all bad,
and do not contribute to the good-good algebra on the
light plane, but we can commute two of these densities as
the light planes approach each other and obtain the
singular Bjorken term. In fact, the leading light-cone
singularity in the commutator of two pseudoscalars or two
scalars just involves the same vector bilocal densities
as the leading singularity in the commutator of two vector

densities

[Pi(x), Pj(y)] = [Si{x), Sj(y)] = [Fiu(X)’ Fju(y)l
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so that the P's and S's give Bjorken functions that are
not only finite but known from deep inelastic electron

and neutrino experiments. The Bjorken limit of the com-
mutator of two divergences of vector or axial vector cur-
rents is also measurable in deep inelastic neutrino ex-
periments, albeit very difficult ones, since they in-
volve polarization and also involve amplitudes that

vanish when the lepton masses vanish. The important thing
is that the shapes of the form factors in such experiments
are predictable from known Bjorken functions and the over-
all strength is given by the "bare quark mass" matrix M,
which is thus perfectly measurable, according to our
ideas, even though the guarks themselves are presumably
fictitious and have no real masses.

The next generalization we may consider is to abstract
the behaviour of current products as well as commutators
near the light-cone. Here we need only abstract the
principle that scale invariance near the light-cone applies
to products as well as commutators. The result is that
products of operators, and even physical ordered products,
are given, apart from subtraction terms that act like
four-dimensional é functions, by the same expressions as
commutators, with s(xo*yo)ﬂ((x—y)z) replaced by
l/[(x—y)z—i(xo-yo)el for ordinary products and by
1/[ (x-y)2-ie] for physical ordered products. The subtraction
terms can often be determined from current conservation:;
sometimes they are zero and sometimes, for certain processes,
they do not matter even when they are non-zerc.

Using the current products, one can design ex-
periments to test the bilocal-bilocal commutators, for
example fourth order cross-sections like those for
e_+p+e"+x+u++u_, where X is any hadronic state, summed

over X.
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Using products, and employing consistency arguments,
we can determine the form of the leading light-cone
singularity in the disconnected part of the current com-
mutator, i.e., the vacuum expected value of a current
commutator, and it turns out to be the same as in free
quark theory or formal quark "gluon" theory. The constant
in front is not determined in this way, and we must
abstract it from the model. It depends on the statistics.
With our funny "quark statistics" or with nine real quarks,
the constant is three times as large as for three Fermi-
Dirac quarks.

We can then predict the asymptotic cross-section
for e++e_+hadrons using single photon annihilation, namely

o(e++e_+hadron9

2,2 1,2 1,2
— + 3[(x) + (-3) + (-3 1=2
c(e++e +u++u ) 3 3 3

where we would have obtained 2/3 with three Fermi-Dirac
quarks.

We are now in a position to go back and rederive
the Adler result for the rate of n°+2y in the PCAC ap-
proximation. Following the lead of Crewther, who first
showed how such an alternative derivation could be given,
Bardeen, Fritzsch and I use the connected light-cone al-
gebra and the disconnected result just given to obtain
the Adler result without invoking renormalized perturb-
ation theory. The answer, as we indicated earlier, agrees
with the experimental n°+2y amplitude in both sign and
magnitude.

A final generalization, about which Fritzsch and I
are not so convinted as we are of the others, involves a
change in our approach from considering only quantities

Acta Physica Austriaca, Suppl. IX 49
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based on currents that couple to electromagnetism and the
weak interaction to including quantities that are not
physically determinable in that way. I have mentioned that
bilocals like Fiu(x,y}, which are analogous to quantities
in the model that involve one quark operator and one anti-
quark operator, can be applied to the vacuum to create
Regge sequences of non-exotic meson states. It might also

be useful to define trilocals Ba (x,y,2z) that are

analogous to operators in the moggiaggvolving three quark
operators at x, y and z, when these points lie on the same
straight light-1like line, and to abstract their algebraic
properties from the model, so that sequences of baryon
states could be produced from the vacuum. We could, in
fact, construct operators that would, between the vacuum
and hadron states, give a partial Fock space for hadrons
with any number of quarks and antiquarks lying on a straight
light-like line. Whether this makes sense, and how many
properties of hadrons we can calculate from such a partial
Fock space of "wave functions" we do not know.

If we go too far in this direction, and try to
construct a complete Fock space for guarks and antiquarks
on a light-like plane, abstracting the algebraic properties
from free quark theory, we are in danger of ending up with
real gquarks, and perhaps even with free real quarks, as
mentioned before. In our work, we are always between
Scylla and Charybdis; we may fail to abstract enough, and
miss important physics, or we may abstract too much and end
up with fictitious objects in our models turning into real

monsters that devour us.
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In connection with the written version of these
lectures, I should like to thank Dr. Heimo Latal and his
collaborators for the excellent lecture notes that they
provided me. I should also like to thank Dr. Oscar
Koralnik of Geneva for providing the beautiful table on
which most of my writing was done. I acknowledge with
thanks the hospitality of the Theoretical Study Division
of CERN.
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